M. Chin-chan, J. Navarro-yepes, and B. Quintanilla-vega, Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases, Front. Cell. Neurosci, vol.9, p.124, 2015.

R. P. Schwarzenbach, The challenge of micropollutants in aquatic systems, Science, vol.313, pp.1072-1077, 2006.

, United Nations Educational, Scientific, and Cultural Organization, World Water Assesment programme, Bergham Books, 2003.

, Scientific REPORTs |, vol.8, p.8023, 2018.

A. Nougadère, Total diet study on pesticide residues in France: levels in food as consumed and chronic dietary risk to consumers, Environ. Int, vol.45, pp.135-150, 2012.

J. R. Richardson, Elevated serum pesticide levels and risk for Alzheimer disease, JAMA Neurol, vol.71, pp.284-290, 2014.

, concerning the noninclusion of rotenone, extract from equisetum and chinin-hydrochlorid in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing these substances, OJ L, vol.108, 2008.

, Directive 91/414/EEC -Plant protection products -Paraquat as an active substance -Marketing authorisation -Authorisation procedure -Protection of human and animal health. Case T-229/04, European Court Reports, p.2437, 2007.

C. M. Tanner, Rotenone, paraquat, and Parkinson's disease, Environ. Health Perspect, vol.119, pp.866-872, 2011.

M. Van-der-mark, Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results, Environ. Health Perspect, vol.120, pp.340-347, 2012.

R. Betarbet, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci, vol.3, pp.1301-1306, 2000.

I. Gordon, E. M. Abdulla, I. C. Campbell, and S. A. Whatley, Phosmet induces up-regulation of surface levels of the cellular prion protein, Neuroreport, vol.9, pp.1391-1395, 1998.

M. Purdey, The UK epidemic of BSE: slow virus or chronic pesticide-initiated modification of the prion protein? Part 2: An epidemiological perspective, Med. Hypotheses, vol.46, pp.445-454, 1996.

P. Brundin, R. Melki, and R. Kopito, Prion-like transmission of protein aggregates in neurodegenerative diseases, Nat. Rev. Mol. Cell Biol, vol.11, pp.301-307, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01183206

A. Van, B. I. Imberdis, T. Perrier, and V. , From prion diseases to prion-like propagation mechanisms of neurodegenerative diseases, Int. J. Cell Biol, p.975832, 2013.

A. Ayrolles-torro, Oligomeric-induced activity by thienyl pyrimidine compounds traps prion infectivity, J. Neurosci. Off. J. Soc. Neurosci, vol.31, pp.14882-14892, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00635922

T. Imberdis, A. Ayrolles-torro, J. Verdier, and V. Perrier, Thienyl pyrimidine derivatives with PrP(Sc) oligomer-inducing activity are a promising tool to study prions, Curr. Top. Med. Chem, vol.13, pp.2477-2483, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01104775

D. C. Friedman and P. Friedman, A theoretical-study of 2,2?,5?,2?-Terthiophene (alpha-T) and its analogs.1. Correlation of electronic-structure and energies with herbicidal phototoxicity, J. Mol. Struct. Theochem, vol.333, pp.71-78, 1995.

M. Nivsarkar, B. Cherian, and H. Padh, Alpha-terthienyl: A plant-derived new generation insecticide, Curr. Sci, vol.81, pp.667-72, 2001.

J. T. Arnason, S. Sims, and I. M. Scott, Natural products from plants as insecticides, Phytochem & Pharmacog, 2012.

R. Marles, Pharmacokinetics, metabolism and toxicity of the plant-derived photoxin alpha-terthienyl, Pharmacol. Toxicol, vol.77, pp.164-168, 1995.

, Loi n°2015-992 du 17 août 2015 relative à la transition énergétique pour la croissance verte, 2015.

J. R. Silveira, The most infectious prion protein particles, Nature, vol.437, pp.257-261, 2005.

S. Simoneau, In vitro and in vivo neurotoxicity of prion protein oligomers, PLoS Pathog, vol.3, p.125, 2007.

D. El-moustaine, V. Perrier, L. Smeller, R. Lange, and J. Torrent, Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways, FEBS J, vol.275, pp.2021-2031, 2008.

D. El-moustaine, Amyloid features and neuronal toxicity of mature prion fibrils are highly sensitive to high pressure, J. Biol. Chem, vol.286, pp.13448-13459, 2011.

T. Imberdis, A Fluorescent Oligothiophene-Bis-Triazine ligand interacts with PrP fibrils and detects SDS-resistant oligomers in human prion diseases, Mol. Neurodegener, vol.11, p.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000137

L. Zechmeister and J. W. Sease, A blue-fluorescing compound, terthienyl, isolated from marigolds, J. Am. Chem. Soc, vol.69, pp.273-275, 1947.

A. Nasri, Neurotoxicity of a Biopesticide Analog on Zebrafish Larvae at Nanomolar Concentrations, Int. J. Mol. Sci, vol.17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01868356

N. Makarava and I. V. Baskakov, The same primary structure of the prion protein yields two distinct self-propagating states, J. Biol. Chem, vol.283, pp.15988-15996, 2008.

V. G. Ostapchenko, Two amyloid States of the prion protein display significantly different folding patterns, J. Mol. Biol, vol.400, pp.908-921, 2010.

Y. S. Kim, R. I. Carp, S. M. Callahan, and H. M. Wisniewski, Incubation periods and survival times for mice injected stereotaxically with three scrapie strains in different brain regions, J. Gen. Virol, vol.68, pp.695-702, 1987.

L. Gaspari, F. Paris, C. Jeandel, and C. Sultan, Peripheral precocious puberty in a 4-month-old girl: role of pesticides?, Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol, vol.27, pp.721-724, 2011.

L. Gaspari, High prevalence of micropenis in 2710 male newborns from an intensive-use pesticide area of Northeastern Brazil, Int. J. Androl, vol.35, pp.253-264, 2012.

F. Paris, L. Gaspari, N. Servant, P. Philibert, and C. Sultan, Increased serum estrogenic bioactivity in girls with premature thelarche: a marker of environmental pollutant exposure?, Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol, vol.29, pp.788-792, 2013.

U. S. Herrmann, Structure-based drug design identifies polythiophenes as antiprion compounds, Sci. Transl. Med, vol.7, pp.299-123, 2015.

T. Klingstedt, The structural basis for optimal performance of oligothiophene-based fluorescent amyloid ligands: conformational flexibility is essential for spectral assignment of a diversity of protein aggregates, Chem. Weinh. Bergstr. Ger, vol.19, pp.10179-10192, 2013.

J. Torrent, Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases, Acta Neuropathol. Commun, vol.3, p.18, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01227412

N. Nishida, Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein, J. Virol, vol.74, pp.320-325, 2000.

H. Rezaei, High yield purification and physico-chemical properties of full-length recombinant allelic variants of sheep prion protein linked to scrapie susceptibility, Eur. J. Biochem, vol.267, pp.2833-2839, 2000.

L. Breydo, N. Makarava, and I. V. Baskakov, Methods for conversion of prion protein into amyloid fibrils, Methods Mol. Biol. Clifton NJ, vol.459, pp.105-115, 2008.

H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda, Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1, Anal. Biochem, vol.177, pp.244-249, 1989.

G. Paxinos and K. B. Francklin, Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates, 2012.

G. A. Carlson, Linkage of prion protein and scrapie incubation time genes, Cell, vol.46, pp.503-511, 1986.

M. Scott, Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques, Cell, vol.59, pp.847-857, 1989.

O. Andréoletti, S. Immunohistochemistry-;-lehmann, and J. Grassi, , pp.82-96, 2004.

K. Toupet, Effective gene therapy in a mouse model of prion diseases, PloS One, vol.3, p.2773, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01667611