M. Hayes, Pathological and evolutionary implications of retroviruses as mobile genetic elements, Genes, vol.4, pp.573-582, 2013.

T. D. Babatz and K. H. Burns, Functional impact of the human mobilome, Curr. Opin. Genet. Dev, vol.23, pp.264-270, 2013.

J. K. Pace and C. Feschotte, The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage, Genome Res, vol.17, pp.422-432, 2007.

A. Katzourakis and R. J. Gifford, Endogenous viral elements in animal genomes, PLoS Genet, vol.6, p.1001191, 2010.

C. Feschotte and C. Gilbert, Endogenous viruses: insights into viral evolution and impact on host biology, Nat. Rev. Genet, vol.13, pp.283-296, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00679842

E. B. Chuong, Regulatory evolution of innate immunity through co-option of endogenous retroviruses, Science, vol.351, pp.1083-1087, 2016.

B. Bonnaud, Evidence of selection on the domesticated ERVWE1 env retroviral element involved in placentation, Mol. Biol. Evol, vol.21, pp.1895-1901, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427546

M. E. Engel and S. W. Hiebert, The enemy within: dormant retroviruses awaken, Nat. Med, vol.16, pp.517-518, 2010.

H. E. Volkman and D. B. Stetson, The enemy within: endogenous retroelements and autoimmune disease, Nat. Immunol, vol.15, pp.415-422, 2014.

H. Perron, Molecular characteristics of human endogenous retrovirus type-W in schizophrenia and bipolar disorder, Transl. Psychiatry, vol.2, p.201, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00807038

S. Levet, An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes, JCI Insight, vol.2, p.94387, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02059891

S. W. Criscione, Transcriptional landscape of repetitive elements in normal and cancer human cells, BMC Genomics, vol.15, p.583, 2014.

P. Liang and W. Tang, Database documentation of retrotransposon insertion polymorphisms, Front. Biosci, vol.4, pp.1542-1555, 2012.

D. J. Hedges and V. P. Belancio, Restless genomes: humans as a model organism for understanding host-retrotransposable element dynamics, Adv. Genet, vol.73, pp.219-262, 2011.

J. Medina and H. Perron, DNA sequences from mobile genetic elements, a hidden half of the human genome, Med. Sci, vol.33, pp.151-158, 2017.

D. C. Hancks and H. H. Kazazian, Jr (2016) Roles for retrotransposon insertions in human disease, Mob. DNA, vol.7, p.9

G. Nishibuchi and J. Dejardin, The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals, Chromosome Res, vol.25, pp.77-87, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01488403

R. Campos-sanchez, Genomic landscape of human, bat, and ex vivo DNA transposon integrations, Mol. Biol. Evol, vol.31, pp.1816-1832, 2014.

R. Belshaw, Long-term reinfection of the human genome by endogenous retroviruses, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.4894-4899, 2004.

L. N. Van-de-lagemaat, Multiple effects govern endogenous retrovirus survival patterns in human gene introns, 2006.

, Genome Biol, vol.7, p.86

C. Serra, In vitro modulation of the multiple sclerosis (MS)-associated retrovirus by cytokines: implications for MS pathogenesis, J. Neurovirol, vol.9, pp.637-643, 2003.

E. Uleri, HIV Tat acts on endogenous retroviruses of the W family and this occurs via Toll-like receptor 4: inference for neuroAIDS, AIDS, vol.28, pp.2659-2670, 2014.

T. Petersen, Effects of interferon-beta therapy on innate and adaptive immune responses to the human endogenous retroviruses HERV-H and HERV-W, cytokine production, and the lectin complement activation pathway in multiple sclerosis, J. Neuroimmunol, vol.215, pp.108-116, 2009.

G. Mameli, Inhibition of multiple-sclerosis-associated retrovirus as biomarker of interferon therapy, J. Neurovirol, vol.14, pp.73-77, 2008.

H. Perron, Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a, 1993.

L. Belbasis, Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and metaanalyses, Lancet Neurol, vol.14, pp.263-273, 2015.

A. K. Hedstrom, Environmental factors and their interactions with risk genotypes in MS susceptibility, Curr. Opin. Neurol, vol.29, pp.293-298, 2016.

H. Renz, Gene-environment interactions in chronic inflammatory disease, Nat. Immunol, vol.12, pp.273-277, 2011.

K. A. Mckay, Risk factors associated with the onset of relapsing-remitting and primary progressive multiple sclerosis: a systematic review, BioMed Res. Int, p.817238, 2015.

K. K. Nissen, No additional copies of HERV-Fc1 in the germ line of multiple sclerosis patients, Virol. J, vol.9, p.188, 2012.

B. Hansen, Genetic association of multiple sclerosis with the marker rs391745 near the endogenous retroviral locus HERV-Fc1: analysis of disease subtypes, PLoS One, vol.6, p.26438, 2011.

S. Muradrasoli, Development of real-time PCRs for detection and quantitation of human MMTV-like (HML) sequences HML expression in human tissues, J. Virol. Methods, vol.136, pp.83-92, 2006.

T. Christensen, Molecular characterization of HERV-H variants associated with multiple sclerosis, Acta Neurol. Scand, vol.101, pp.229-238, 2000.

T. Brudek, B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity, Retrovirology, vol.6, p.104, 2009.

T. Christensen, Human endogenous retroviruses in neurologic disease, APMIS, vol.124, pp.116-126, 2016.

E. Morandi, The association between human endogenous retroviruses and multiple sclerosis: a systematic review and meta-analysis, PLoS One, vol.12, p.172415, 2017.

H. Perron, Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles, Res. Virol, vol.140, pp.551-561, 1989.

H. Perron, Isolation of retrovirus from patients with multiple sclerosis, Lancet, vol.337, pp.862-863, 1991.

F. Komurian-pradel, Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles, Virology, vol.260, pp.1-9, 1999.

H. Perron, Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.7583-7588, 1997.

P. W. Tuke, Development of a pan-retrovirus detection system for multiple sclerosis studies, Acta Neurol. Scand. Suppl, vol.169, pp.16-21, 1997.

J. L. Blond, Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family, J. Virol, vol.73, pp.1175-1185, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00428437

G. Mameli, Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MSassociated retrovirus/HERV-W endogenous retrovirus, but not human herpesvirus 6, J. Gen. Virol, vol.88, pp.264-274, 2007.

H. Perron, Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease, Mult. Scler, vol.18, pp.1721-1736, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00826751

S. Sotgiu, Multiple sclerosis-associated retrovirus and progressive disability of multiple sclerosis, Mult. Scler, vol.16, pp.1248-1251, 2010.

J. A. Garson, Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis, Lancet, vol.351, p.33, 1998.

M. Garcia-montojo, The DNA copy number of human endogenous retrovirus-W (MSRV-type) is increased in multiple sclerosis patients and is influenced by gender and disease severity, PLoS One, vol.8, p.53623, 2013.

D. Kremer, Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation, Ann. Neurol, vol.74, pp.721-732, 2013.

J. Van-horssen, Human endogenous retrovirus W in brain lesions: rationale for targeted therapy in multiple sclerosis, Mult. Scler. Relat. Disord, vol.8, pp.11-18, 2016.

A. Rolland, The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses, J. Immunol, vol.176, pp.7636-7644, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00000108

M. Saresella, Multiple sclerosis-associated retroviral agent (MSRV)-stimulated cytokine production in patients with relapsing-remitting multiple sclerosis, Mult. Scler, vol.15, pp.443-447, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00371200

D. Kremer, The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade, Mult. Scler, vol.21, pp.1200-1203, 2015.

F. Curtin, Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein, MAbs, vol.7, pp.265-275, 2015.

A. Duperray, Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4, Int. Immunol, vol.27, pp.545-553, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01163817

F. Curtin, Serum pharmacokinetics and cerebrospinal fluid concentration analysis of the new IgG4 monoclonal antibody GNbAC1 to treat multiple sclerosis: a Phase 1 study, MAbs, vol.8, pp.854-860, 2016.

T. Derfuss, A phase IIa randomized clinical study testing GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis associated endogenous retrovirus in multiple sclerosis patients -a twelve month followup, J. Neuroimmunol, vol.285, pp.68-70, 2015.

F. Curtin, GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus: a first-in-humans randomized clinical study, Clin. Ther, vol.34, pp.2268-2278, 2012.

F. Curtin, A placebo randomized controlled study to test the efficacy and safety of GNbAC1, a monoclonal antibody for the treatment of multiple sclerosis -rationale and design, vol.9, pp.95-100, 2016.

H. Maruszak, Could antiretroviral drugs be effective in multiple sclerosis? A case report, Eur. J. Neurol, vol.18, pp.110-111, 2011.

R. Faucard, Human endogenous retrovirus and neuroinflammation in chronic inflammatory demyelinating polyradiculoneuropathy, EBioMedicine, vol.6, pp.190-198, 2016.

M. V. Viola, RNA-instructed DNA polymerase activity in a cytoplasmic particulate fraction in brains from Guamanian patients, J. Exp. Med, vol.142, pp.483-494, 1975.

W. D. Andrews, Detection of reverse transcriptase activity in the serum of patients with motor neurone disease, J. Med. Virol, vol.61, pp.527-532, 2000.

A. L. Mccormick, Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate, Neurology, vol.70, pp.278-283, 2008.

A. J. Steele, Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives, Neurology, vol.64, pp.454-458, 2005.

Y. J. Kim, No evidence of HIV pol gene in spinal cord tissues in sporadic ALS by real-time RT-PCR, Amyotroph. Lateral Scler, vol.11, pp.91-96, 2010.

R. Douville, Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis, Ann. Neurol, vol.69, pp.141-151, 2011.

W. Li, Human endogenous retrovirus-K contributes to motor neuron disease, Sci. Transl. Med, vol.7, pp.307-153, 2015.

R. Belshaw, Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity, J. Virol, vol.79, pp.12507-12514, 2005.

R. P. Subramanian, Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses, Retrovirology, vol.8, p.90, 2011.

E. Marchi, Unfixed endogenous retroviral insertions in the human population, J. Virol, vol.88, pp.9529-9537, 2014.

J. H. Wildschutte, Discovery of unfixed endogenous retrovirus insertions in diverse human populations, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.2326-2334, 2016.

Y. N. Lee and P. D. Bieniasz, Reconstitution of an infectious human endogenous retrovirus, PLoS Pathog, vol.3, p.10, 2007.

J. Goke, Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells, Cell Stem Cell, vol.16, pp.135-141, 2015.

L. M. Igaz, Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice, J. Clin. Invest, vol.121, pp.726-738, 2011.

R. Tyagi, Inhibition of human endogenous retrovirus-K replication by antiretroviral drugs, Retrovirology, vol.14, p.21, 2017.

S. N. Scelsa, A pilot, double-blind, placebo-controlled trial of indinavir in patients with ALS, Neurology, vol.64, pp.1298-1300, 2005.

T. Alfahad and A. Nath, Retroviruses and amyotrophic lateral sclerosis, Antiviral Res, vol.99, pp.180-187, 2013.

L. N. Bowen, HIV-associated motor neuron disease: HERV-K activation and response to antiretroviral therapy, Neurology, vol.87, pp.1756-1762, 2016.

M. J. Gonzalez-hernandez, Regulation of the human endogenous retrovirus K (HML-2) transcriptome by the HIV-1 Tat protein, J. Virol, vol.88, pp.8924-8935, 2014.

H. Perron, Endogenous retroviral genes, herpesviruses and gender in multiple sclerosis, J. Neurol. Sci, vol.286, pp.65-72, 2009.

W. Makalowski, The human genome structure and organization, Acta Biochim. Pol, vol.48, pp.587-598, 2001.

D. Grover, ALU-ring elements in the primate genomes, Genetica, vol.124, pp.273-289, 2005.

J. K. Kulski and R. L. Dawkins, The P5 multicopy gene family in the MHC is related in sequence to human endogenous retroviruses HERV-L and HERV-16, Immunogenetics, vol.49, pp.404-412, 1999.