J. M. Anderson and C. M. Van-itallie, Tight junctions and the molecular basis for regulation of paracellular permeability, Am. J. Physiol, vol.269, pp.467-75, 1995.

A. Nagafuchi, Molecular architecture of adherens junctions, Curr. Opin. Cell Biol, vol.13, pp.600-603, 2001.

A. Wodarz and I. Nathke, Cell polarity in development and cancer, Nat. Cell Biol, vol.9, pp.1016-1024, 2007.

S. H. Lee, Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases, Intest. Res, vol.13, pp.11-18, 2015.

D. P. Basile, M. D. Anderson, and T. A. Sutton, Pathophysiology of acute kidney injury, Compr. Physiol, vol.2, pp.1303-1353, 2012.

F. A. Ross, C. Mackintosh, and D. G. Hardie, AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours, FEBS J, vol.283, pp.2987-3001, 2016.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMP-activated protein kinase: A target for drugs both ancient and modern, Chem. Biol, vol.19, pp.1222-1236, 2012.

Y. L. Zhang, H. Guo, C. S. Zhang, S. Y. Lin, Z. Yin et al., AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation, Cell Metab, vol.18, pp.546-555, 2013.

S. A. Hawley, D. A. Pan, K. J. Mustard, L. Ross, J. Bain et al., Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase, Cell Metab, vol.2, pp.9-19, 2005.

B. Guigas and B. Viollet, Targeting AMPK: From Ancient Drugs to New Small-Molecule Activators, vol.107, pp.327-350, 2016.

L. Zhang, J. Li, L. H. Young, and M. J. Caplan, AMP-activated protein kinase regulates the assembly of epithelial tight junctions, Proc. Natl. Acad. Sci, vol.103, pp.17272-17277, 2006.

B. Zheng and L. C. Cantley, Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase, Proc. Natl. Acad. Sci, vol.104, pp.819-822, 2007.

K. K. Kalsi, J. P. Garnett, W. Patkee, A. Weekes, M. E. Dockrell et al., Metformin attenuates the effect of Staphylococcus aureus on airway tight junctions by increasing PKCzeta-mediated phosphorylation of occludin, J. Cell Mol. Med, vol.23, pp.317-327, 2019.

D. Castanares-zapatero, C. Bouleti, C. Sommereyns, B. Gerber, C. Lecut et al., Connection between cardiac vascular permeability, myocardial edema, and inflammation during sepsis: Role of the alpha1AMP-activated protein kinase isoform, Crit. Care Med, vol.41, pp.411-433, 2013.

, Int. J. Mol. Sci, vol.20, p.5171, 2019.

F. Takata, S. Dohgu, J. Matsumoto, T. Machida, S. Kaneshima et al., Metformin induces up-regulation of blood-brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells, Biochem. Biophy. Res. Commun, vol.433, pp.586-590, 2013.

L. Chen, J. Wang, Q. You, S. He, Q. Meng et al., Activating AMPK to Restore Tight Junction Assembly in Intestinal Epithelium and to Attenuate Experimental Colitis by Metformin, Front Pharmacol, vol.9, p.761, 2018.

J. Deng, L. Zeng, X. Lai, J. Li, L. Liu et al., Metformin protects against intestinal barrier dysfunction via AMPKalpha1-dependent inhibition of JNK signalling activation, J. Cell Mol. Med, vol.22, pp.546-557, 2018.

Y. Xue, H. Zhang, X. Sun, and M. J. Zhu, Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice, PLoS ONE, vol.11, 2016.

L. Peng, Z. R. Li, R. S. Green, I. R. Holzman, and J. Lin, Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers, J. Nutr, vol.139, pp.1619-1625, 2009.

E. E. Elamin, A. A. Masclee, J. Dekker, H. J. Pieters, and D. M. Jonkers, Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers, J Nutr, vol.143, pp.1872-1881, 2013.

T. A. Dite, C. G. Langendorf, A. Hoque, S. Galic, R. J. Rebello et al., AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965, J. Biol. Chem, vol.293, pp.8874-8885, 2018.

M. Foretz, S. Hebrard, J. Leclerc, E. Zarrinpashneh, M. Soty et al., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, J. Clin. Invest, vol.120, pp.2355-2369, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00495746

A. Grenier, P. Sujobert, S. Olivier, H. Guermouche, J. Mondesir et al., Knockdown of Human AMPK Using the CRISPR/Cas9 Genome-Editing System, Methods Mol. Biol, vol.1732, pp.171-194, 2018.

E. Harmel, E. Grenier, A. Bendjoudi-ouadda, M. El-chebly, E. Ziv et al., AMPK in the small intestine in normal and pathophysiological conditions, Endocrinology, vol.155, pp.873-888, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859006

B. Xiao, M. J. Sanders, D. Carmena, N. J. Bright, L. F. Haire et al., Structural basis of AMPK regulation by small molecule activators, Nat. Commun, 2013.

M. Cereijido, E. S. Robbins, W. J. Dolan, C. A. Rotunno, and D. D. Sabatini, Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell Biol, vol.77, pp.853-880, 1978.

A. Woods, S. R. Johnstone, K. Dickerson, F. C. Leiper, L. G. Fryer et al., Curr Biol, vol.13, 2003.

A. F. Baas, J. Kuipers, N. N. Van-der-wel, E. Batlle, H. K. Koerten et al., Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD, Cell, vol.116, pp.457-466, 2004.

X. Sun, Q. Yang, C. J. Rogers, M. Du, and M. J. Zhu, AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression, Cell Death Differ, vol.24, pp.819-831, 2017.

B. Guigas, K. Sakamoto, N. Taleux, S. M. Reyna, N. Musi et al., Beyond AICA riboside: In search of new specific AMP-activated protein kinase activators, IUBMB Life, vol.61, pp.18-26, 2009.

S. Olivier, M. Foretz, and B. Viollet, Promise and challenges for direct small molecule AMPK activators, Biochem. Pharmacol, vol.153, pp.147-158, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01724341

S. Ducommun, M. Deak, D. Sumpton, R. J. Ford, A. Nunez-galindo et al., Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate, Cell Signal, vol.27, pp.978-988, 2015.

S. Jain, T. Suzuki, A. Seth, G. Samak, and R. Rao, Protein kinase Czeta phosphorylates occludin and promotes assembly of epithelial tight junctions, Biochem. J, vol.437, pp.289-299, 2011.

, Int. J. Mol. Sci, vol.20, p.5171, 2019.

T. Suzuki, B. C. Elias, A. Seth, L. Shen, J. R. Turner et al., PKC eta regulates occludin phosphorylation and epithelial tight junction integrity, Proc. Natl. Acad. Sci, vol.106, pp.61-66, 2009.

W. Miao, X. Wu, K. Wang, W. Wang, Y. Wang et al., Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCbeta2, Int. J. Mol. Sci, vol.17, 1696.

J. H. Lee, H. Koh, M. Kim, Y. Kim, S. Y. Lee et al., Energy-dependent regulation of cell structure by AMP-activated protein kinase, Nature, vol.447, pp.1017-1020, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167887

L. Zhang, F. Jouret, J. Rinehart, J. Sfakianos, I. Mellman et al., AMP-activated protein kinase (AMPK) activation and glycogen synthase kinase-3beta (GSK-3beta) inhibition induce Ca2+-independent deposition of tight junction components at the plasma membrane, J. Biol. Chem, vol.286, pp.16879-16890, 2011.

P. Rowart, J. Wu, M. J. Caplan, and F. Jouret, Implications of AMPK in the Formation of Epithelial Tight Junctions, Int. J. Mol. Sci, 2018.

T. Yano, T. Matsui, A. Tamura, M. Uji, and S. Tsukita, The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK, J. Cell Biol, vol.203, pp.605-614, 2013.

N. Aznar, A. Patel, C. C. Rohena, Y. Dunkel, L. P. Joosen et al., AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin, vol.5, 2016.

P. Ghosh, L. Swanson, I. M. Sayed, Y. Mittal, B. B. Lim et al., A Signaling Pathway to Detect and Repair the Leaky Gut barrier: Implications in Aging and Cancer. Unpublished work, 2019.

E. Elamin, A. Masclee, K. Juuti-uusitalo, S. Van-ijzendoorn, F. Troost et al., Fatty acid ethyl esters induce intestinal epithelial barrier dysfunction via a reactive oxygen species-dependent mechanism in a three-dimensional cell culture model, PLoS ONE, vol.8, 2013.

C. Muanprasat, P. Wongkrasant, S. Satitsri, A. Moonwiriyakit, P. Pongkorpsakol et al., Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells: Mechanism of action and potential applications in intestinal disorders, Biochem Pharmacol, vol.96, pp.225-236, 2015.

K. Wang, X. Jin, Y. Chen, Z. Song, X. Jiang et al., Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling, Nutrients, vol.8, p.272, 2016.

X. Sun, M. Du, D. A. Navarre, and M. J. Zhu, Purple Potato Extract Promotes Intestinal Epithelial Differentiation and Barrier Function by Activating AMP-Activated Protein Kinase, Mol. Nutr. Food Res, vol.62, 2018.

H. Y. Park, Y. Kunitake, N. Hirasaki, M. Tanaka, and T. Matsui, Theaflavins enhance intestinal barrier of Caco-2 Cell monolayers through the expression of AMP-activated protein kinase-mediated Occludin, Claudin-1, and ZO-1, Biosci. Biotechnol. Biochem, vol.79, pp.130-137, 2015.