J. S. Marshall, Mast-cell responses to pathogens, Nat Rev Immunol, vol.4, pp.787-799, 2004.

U. Blank, I. K. Madera-salcedo, and L. Danelli, Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells, Front Immunol, vol.5, p.453, 2014.

R. C. Monteiro and J. G. Van-de-winkel, IgA Fc receptors, Annu Rev Immunol, vol.21, pp.177-204, 2003.

B. Pasquier, P. Launay, and Y. Kanamaru, Identification of FcalphaRI as an inhibitory receptor that controls inflammation: Dual role of FcRgamma ITAM, Immunity, vol.22, pp.31-42, 2005.

B. Sechet, A. Meseri-delwail, and M. Arock, Immunoglobulin D enhances interleukin-6 release from the KU812 human prebasophil cell line, Gen Physiol Biophys, vol.22, pp.255-263, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00282548

K. Chen, W. Xu, and M. Wilson, Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cellstimulating programs in basophils, Nat Immunol, vol.10, pp.889-898, 2009.

C. Tkaczyk, Y. Okayama, and M. R. Woolhiser, Activation of human mast cells through the high affinity IgG receptor, Mol Immunol, vol.38, pp.1289-1293, 2002.

Y. Okayama, A. S. Kirshenbaum, and D. D. Metcalfe, Expression of a functional high-affinity IgG receptor, Fc gamma RI, on human mast cells: Up-regulation by IFN-gamma, J Immunol, vol.164, pp.4332-4339, 2000.

R. Kobayashi, S. Okamura, and T. Ohno, Hyperexpression of FcgammaRI and Toll-like receptor 4 in the intestinal mast cells of Crohn's disease patients, Clin Immunol, vol.125, pp.149-158, 2007.

C. L. Kepley, S. Taghavi, and G. Mackay, Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes, J Biol Chem, vol.279, pp.35139-35149, 2004.

W. Zhao, C. L. Kepley, and P. A. Morel, Fc gamma RIIa, not Fc gamma RIIb, is constitutively and functionally expressed on skin-derived human mast cells, J Immunol, vol.177, pp.694-701, 2006.

M. Daeron, C. Bonnerot, S. Latour, and W. H. Fridman, Murine recombinant Fc gamma RIII, but not Fc gamma RII, trigger serotonin release in rat basophilic leukemia cells, J Immunol, vol.149, pp.1365-1373, 1992.

S. Latour, C. Bonnerot, W. H. Fridman, and M. Daeron, Induction of tumor necrosis factor-alpha production by mast cells via Fc gamma R. Role of the Fc gamma RIII gamma subunit, J Immunol, vol.149, pp.2155-2162, 1992.

O. Malbec, K. Roget, and C. Schiffer, Peritoneal cell-derived mast cells: An in vitro model of mature serosal-type mouse mast cells, J Immunol, vol.178, pp.6465-6475, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00181324

A. Getahun and J. C. Cambier, Of ITIMs, ITAMs, and ITAMis: Revisiting immunoglobulin Fc receptor signaling, Immunol Rev, vol.268, pp.66-73, 2015.

F. Jonsson and M. Daeron, Mast cells and company, Front Immunol, vol.3, p.16, 2012.

S. D. Pauls and A. J. Marshall, Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic target, Eur J Immunol, vol.47, pp.932-945, 2017.

M. Huber, C. D. Helgason, and J. E. Damen, The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation, Proc Natl Acad Sci, vol.95, pp.11330-11335, 1998.

P. Bruhns, B. Iannascoli, and P. England, Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses, Blood, vol.113, pp.3716-3725, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00363931

J. Schuurman, G. J. Perdok, G. A. Mueller, and R. C. Aalberse, Complementation of Der P 2-induced histamine release from human basophils sensitized with monoclonal IgE: Not only by IgE, but also by IgG antibodies directed to a nonoverlapping epitope of Der p 2, J Allergy Clin Immunol, vol.101, pp.404-409, 1998.

S. Braber, M. Thio, and B. R. Blokhuis, An association between neutrophils and immunoglobulin free light chains in the pathogenesis of chronic obstructive pulmonary disease, Am J Respir Crit Care Med, vol.185, pp.817-824, 2012.

G. Kormelink, T. Calus, L. , D. Ruyck, and N. , Local free light chain expression is increased in chronic rhinosinusitis with nasal polyps, Allergy, vol.67, pp.1165-1172, 2012.

G. Kormelink, T. Pardo, A. Knipping, and K. , Immunoglobulin free light chains are increased in hypersensitivity pneumonitis and idiopathic pulmonary fibrosis, PLoS ONE, vol.6, p.25392, 2011.

G. Kormelink, T. Powe, D. G. Kuijpers, and S. A. , Immunoglobulin free light chains are biomarkers of poor prognosis in basal-like breast cancer and are potential targets in tumor-associated inflammation, Oncotarget, vol.5, pp.3159-3167, 2014.

G. Kormelink, T. Thio, M. Blokhuis, B. R. Nijkamp, F. P. Redegeld et al., Atopic and non-atopic allergic disorders: Current insights into the possible involvement of free immunoglobulin light chains, Clin Exp Allergy, vol.39, pp.33-42, 2009.

T. G. Kormelink, J. Tekstra, and R. M. Thurlings, Decrease in immunoglobulin free light chains in patients with rheumatoid arthritis upon rituximab (anti-CD20) treatment correlates with decrease in disease activity, Ann Rheum Dis, vol.69, pp.2137-2144, 2010.

A. D. Kraneveld, M. Kool, and A. H. Van-houwelingen, Elicitation of allergic asthma by immunoglobulin free light chains, Proc Natl Acad Sci USA, vol.102, pp.1578-1583, 2005.

A. Matsumori, M. Shimada, and X. Jie, Effects of free immunoglobulin light chains on viral myocarditis, Circ Res, vol.106, pp.1533-1540, 2010.

F. A. Redegeld, M. Thio, G. Kormelink, and T. , Polyclonal immunoglobulin free light chain and chronic inflammation, Mayo Clin Proc, vol.87, pp.1032-1033, 2012.

A. Rijnierse, F. A. Redegeld, and B. R. Blokhuis, Ig-free light chains play a crucial role in murine mast cell-dependent colitis and are associated with human inflammatory bowel diseases, J Immunol, vol.185, pp.653-659, 2010.

B. Schouten, B. C. Van-esch, and A. O. Van-thuijl, Contribution of IgE and immunoglobulin free light chain in the allergic reaction to cow's milk proteins, J Allergy Clin Immunol, vol.125, pp.1308-1314, 2010.

M. Thio, B. R. Blokhuis, F. P. Nijkamp, and F. A. Redegeld, Free immunoglobulin light chains: A novel target in the therapy of inflammatory diseases, Trends Pharmacol Sci, vol.29, pp.170-174, 2008.

F. A. Redegeld, M. W. Van-der-heijden, and M. Kool, Immunoglobulinfree light chains elicit immediate hypersensitivity-like responses, Nat Med, vol.8, pp.694-701, 2002.

M. Thio, G. Kormelink, T. Fischer, and M. J. , Antigen binding characteristics of immunoglobulin free light chains: Crosslinking by antigen is essential to induce allergic inflammation, PLoS ONE, vol.7, p.40986, 2012.

H. Sandig and S. Bulfone-paus, TLR signaling in mast cells: Common and unique features, Front Immunol, vol.3, p.185, 2012.

S. Peng, C. Li, and X. Wang, Increased toll-like receptors activity and TLR ligands in patients with autoimmune thyroid diseases, Front Immunol, vol.7, p.578, 2016.

J. Agier, P. Zelechowska, E. Kozlowska, and E. Brzezinska-blaszczyk, Expression of surface and intracellular Toll-like receptors by mature mast cells, Cent Eur J Immunol, vol.41, pp.333-338, 2016.

S. Mrabet-dahbi, M. Metz, A. Dudeck, T. Zuberbier, and M. Maurer, Murine mast cells secrete a unique profile of cytokines and prostaglandins in response to distinct TLR2 ligands, Exp Dermatol, vol.18, pp.437-444, 2009.

E. Brzezinska-blaszczyk and R. S. Rdzany, Lipoteichoic acids selectively stimulate rat mast cells to cysteinyl leukotriene generation and affect mast cell migration after tumor necrosis factor (TNF)-priming, Immunol Lett, vol.109, pp.138-144, 2007.

S. Varadaradjalou, F. Feger, and N. Thieblemont, Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells, Eur J Immunol, vol.33, pp.899-906, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00282565

V. Supajatura, H. Ushio, and A. Nakao, Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity, J Clin Invest, vol.109, pp.1351-1359, 2002.

T. Ikeda and M. Funaba, Altered function of murine mast cells in response to lipopolysaccharide and peptidoglycan, Immunol Lett, vol.88, pp.21-26, 2003.

H. Qiao, M. V. Andrade, F. A. Lisboa, K. Morgan, and M. A. Beaven, FcepsilonR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells, Blood, vol.107, pp.610-618, 2006.

Y. Y. Zhang, Y. Y. Yu, Y. R. Zhang, W. Zhang, and B. Yu, The modulatory effect of TLR2 on LL-37-induced human mast cells activation, Biochem Biophys Res Commun, vol.470, pp.368-374, 2016.

Y. Yu, K. H. Yip, and I. Y. Tam, Differential effects of the Toll-like receptor 2 agonists, PGN and Pam3CSK4 on anti-IgE induced human mast cell activation, PLoS ONE, vol.9, p.112989, 2014.

M. Yoshioka, N. Fukuishi, and S. Iriguchi, Lipoteichoic acid downregulates FcepsilonRI expression on human mast cells through Toll-like receptor 2, J Allergy Clin Immunol, vol.120, pp.452-461, 2007.

B. P. Tancowny, V. Karpov, R. P. Schleimer, and M. Kulka, Substance P primes lipoteichoic acid-and Pam3CysSerLys4-mediated activation of human mast cells by up-regulating Toll-like receptor 2, Immunology, vol.131, pp.220-230, 2010.

M. Jin, B. Yu, and W. Zhang, Toll-like receptor 2-mediated MAPKs and NF-kappaB activation requires the GNAO1-dependent pathway in human mast cells, Integr Biol (Camb), vol.8, pp.968-975, 2016.

C. C. Lee, A. M. Avalos, and H. L. Ploegh, Accessory molecules for Toll-like receptors and their function, Nat Rev Immunol, vol.12, pp.168-179, 2012.

H. Matsushima, N. Yamada, H. Matsue, and S. Shimada, TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells, J Immunol, vol.173, pp.531-541, 2004.

J. D. Mccurdy, T. J. Lin, and J. S. Marshall, Toll-like receptor 4-mediated activation of murine mast cells, J Leukoc Biol, vol.70, pp.977-984, 2001.

V. Supajatura, H. Ushio, and A. Nakao, Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4, J Immunol, vol.167, pp.2250-2256, 2001.

H. Ushio, A. Nakao, and V. Supajatura, MD-2 is required for the full responsiveness of mast cells to LPS but not to PGN, Biochem Biophys Res Commun, vol.323, pp.491-498, 2004.

M. Kulka, L. Alexopoulou, R. A. Flavell, and D. D. Metcalfe, Activation of mast cells by double-stranded RNA: Evidence for activation through Tolllike receptor 3, J Allergy Clin Immunol, vol.114, pp.174-182, 2004.

M. Kulka and D. D. Metcalfe, TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin, Mol Immunol, vol.43, pp.1579-1586, 2006.

A. J. Lee, M. Ro, K. J. Cho, and J. H. Kim, Lipopolysaccharide/TLR4 stimulates IL-13 production through a MyD88-BLT2-linked cascade in mast cells, potentially contributing to the allergic response, J Immunol, vol.199, pp.409-417, 2017.

N. Wang, M. Mckell, and A. Dang, Lipopolysaccharide suppresses IgEmast cell mediated reactions, Clin Exp Allergy, vol.47, pp.1574-1585, 2017.

F. Wolbing, J. Fischer, M. Koberle, S. Kaesler, and T. Biedermann, About the role and underlying mechanisms of cofactors in anaphylaxis, Allergy, vol.68, pp.1085-1092, 2013.

F. Hayashi, K. D. Smith, and A. Ozinsky, The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5, Nature, vol.410, pp.1099-1103, 2001.

L. Li, L. Mo, and H. Hao, Flagellin modulates TIM4 expression in mast cells, Cell Biol Int, vol.38, pp.1330-1336, 2014.

S. W. Brubaker, K. S. Bonham, I. Zanoni, and J. C. Kagan, Innate immune pattern recognition: A cell biological perspective, Annu Rev Immunol, vol.33, pp.257-290, 2015.

M. Becker, N. A. Lemmermann, and S. Ebert, Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms, Cell Mol Immunol, vol.12, pp.192-201, 2015.

Z. Orinska, E. Bulanova, and V. Budagian, TLR3-induced activation of mast cells modulates CD8 + T-cell recruitment, Blood, vol.106, pp.978-987, 2005.

D. Meng, C. Huo, and M. Wang, Influenza A viruses replicate productively in mouse mastocytoma cells (P815) and trigger proinflammatory cytokine and chemokine production through TLR3 signaling pathway, Front Microbiol, vol.7, p.2130, 2016.

S. Chattopadhyay and G. C. Sen, Tyrosine phosphorylation in Toll-like receptor signaling, Cytokine Growth Factor Rev, vol.25, pp.533-541, 2014.

H. Hemmi, T. Kaisho, and O. Takeuchi, Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway, Nat Immunol, vol.3, pp.196-200, 2002.

P. Witczak, A. Pietrzak, K. Wodz, and E. Brzezinska-blaszczyk, Mast cells generate cysteinyl leukotrienes and interferon-beta as well as evince impaired IgE-dependent degranulation upon TLR7 engagement, Indian J Exp Biol, vol.52, pp.589-596, 2014.

E. Passante, C. Ehrhardt, H. Sheridan, and N. Frankish, Toll-like receptors and RBL-2H3 mast cells, Inflamm Res, vol.58, issue.1, pp.11-12, 2009.

E. Bourke, D. Bosisio, J. Golay, N. Polentarutti, and A. Mantovani, The tolllike receptor repertoire of human B lymphocytes: Inducible and selective expression of TLR9 and TLR10 in normal and transformed cells, Blood, vol.102, pp.956-963, 2003.

J. C. Hoving, G. J. Wilson, and G. D. Brown, Signalling C-type lectin receptors, microbial recognition and immunity, Cell Microbiol, vol.16, pp.185-194, 2014.

T. J. Olynych, D. L. Jakeman, and J. S. Marshall, Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism, J Allergy Clin Immunol, vol.118, pp.837-843, 2006.

Y. Kimura, K. Chihara, and C. Honjoh, Dectin-1-mediated signaling leads to characteristic gene expressions and cytokine secretion via spleen tyrosine kinase (Syk) in rat mast cells, J Biol Chem, vol.289, pp.31565-31575, 2014.

Z. Yang and J. S. Marshall, Zymosan treatment of mouse mast cells enhances dectin-1 expression and induces dectin-1-dependent reactive oxygen species (ROS) generation, Immunobiology, vol.214, pp.321-330, 2009.

K. H. Pinke, H. G. Lima, F. Q. Cunha, and V. S. Lara, Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1, Immunobiology, vol.221, pp.220-227, 2016.

M. Elishmereni and F. Levi-schaffer, CD48: A co-stimulatory receptor of immunity, Int J Biochem Cell Biol, vol.43, pp.25-28, 2011.

R. Malaviya, Z. Gao, K. Thankavel, P. A. Van-der-merwe, and A. Sn, The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositolanchored molecule CD48, Proc Natl Acad Sci USA, vol.96, pp.8110-8115, 1999.

R. Malaviya, T. Ikeda, E. Ross, and S. N. Abraham, Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha, Nature, vol.381, pp.77-80, 1996.

C. M. Rocha-de-souza, B. Berent-maoz, D. Mankuta, A. E. Moses, and F. Levi-schaffer, Human mast cell activation by Staphylococcus aureus: Interleukin-8 and tumor necrosis factor alpha release and the role of Toll-like receptor 2 and CD48 molecules, Infect Immun, vol.76, pp.4489-4497, 2008.

J. S. Shin and S. N. Abraham, Glycosylphosphatidylinositol-anchored receptor-mediated bacterial endocytosis, FEMS Microbiol Lett, vol.197, pp.131-138, 2001.

M. Fukuda, H. Ushio, and J. Kawasaki, Expression and functional characterization of retinoic acid-inducible gene-I-like receptors of mast cells in response to viral infection, J Innate Immun, vol.5, pp.163-173, 2013.

A. C. Graham, K. M. Hilmer, J. M. Zickovich, and J. J. Obar, Inflammatory response of mast cells during influenza A virus infection is mediated by active infection and RIG-I signaling, J Immunol, vol.190, pp.4676-4684, 2013.

A. L. St-john, A. P. Rathore, and H. Yap, Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance, Proc Natl Acad Sci, vol.108, pp.9190-9195, 2011.

M. G. Brown, S. M. Mcalpine, and Y. Y. Huang, RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection, PLoS ONE, vol.7, p.34055, 2012.

C. A. King, R. Anderson, and J. S. Marshall, Dengue virus selectively induces human mast cell chemokine production, J Virol, vol.76, pp.8408-8419, 2002.

M. Tsutsui-takeuchi, H. Ushio, and M. Fukuda, Roles of retinoic acidinducible gene-I-like receptors (RLRs), Toll-like receptor (TLR) 3 and 2?-5? oligoadenylate synthetase as viral recognition receptors on human mast cells in response to viral infection, Immunol Res, vol.61, pp.240-249, 2015.

M. Enoksson, K. F. Ejendal, S. Mcalpine, G. Nilsson, and C. Lunderius-andersson, Human cord blood-derived mast cells are activated by the Nod1 agonist M-TriDAP to release pro-inflammatory cytokines and chemokines, J Innate Immun, vol.3, pp.142-149, 2011.

B. S. Feng, S. H. He, P. Y. Zheng, L. Wu, and P. C. Yang, Mast cells play a crucial role in Staphylococcus aureus peptidoglycan-induced diarrhea, Am J Pathol, vol.171, pp.537-547, 2007.

Y. Nakamura, L. Franchi, and N. Kambe, Critical role for mast cells in interleukin-1beta-driven skin inflammation associated with an activating mutation in the nlrp3 protein, Immunity, vol.37, pp.85-95, 2012.

S. Okumura, Y. K. Kobayashi, and R. , Hyperexpression of NOD2 in intestinal mast cells of Crohn's disease patients: Preferential expression of inflammatory cell-recruiting molecules via NOD2 in mast cells, Clin Immunol, vol.130, pp.175-185, 2009.

L. Wu, B. S. Feng, and S. H. He, Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: The role of TLR2 and NOD2, Immunol Cell Biol, vol.85, pp.538-545, 2007.

G. Zabucchi, E. Trevisan, F. Vita, M. R. Soranzo, and V. Borelli, NOD1 and NOD2 interact with the phagosome cargo in mast cells: A detailed morphological evidence, Inflammation, vol.38, pp.1113-1125, 2015.

Y. Nakamura, N. Kambe, and M. Saito, Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria, J Exp Med, vol.206, pp.1037-1046, 2009.

L. Agostini, F. Martinon, and K. Burns, NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder, Immunity, vol.20, pp.319-325, 2004.

Y. Nakamura and N. Kambe, Linkage of bacterial colonization of skin and the urticaria-like rash of NLRP3-mediated autoinflammatory syndromes through mast cell-derived TNF-alpha, J Dermatol Sci, vol.71, pp.83-88, 2013.

K. L. Pierce, R. T. Premont, and R. J. Lefkowitz, Seven-transmembrane receptors, Nat Rev Mol Cell Biol, vol.3, pp.639-650, 2002.

S. R. Neves, P. T. Ram, and R. Iyengar, G protein pathways, Science, vol.296, pp.1636-1639, 2002.

R. T. Premont and R. R. Gainetdinov, Physiological roles of G protein-coupled receptor kinases and arrestins, Annu Rev Physiol, vol.69, pp.511-534, 2007.

W. D. Paton, Histamine release by compounds of simple chemical structure, Pharmacol Rev, vol.9, pp.269-328, 1957.

D. Lagunoff, T. W. Martin, and G. Read, Agents that release histamine from mast cells, Annu Rev Pharmacol Toxicol, vol.23, pp.331-351, 1983.

M. C. Cavalcante, S. Allodi, and A. P. Valente, Occurrence of heparin in the invertebrate styela plicata (Tunicata) is restricted to cell layers facing the outside environment. An ancient role in defense?, J Biol Chem, vol.275, pp.36189-36186, 2000.

B. D. Mcneil, P. Pundir, and S. Meeker, Identification of a mast-cellspecific receptor crucial for pseudo-allergic drug reactions, Nature, vol.519, pp.237-241, 2015.

J. F. Riley and G. B. West, The presence of histamine in tissue mast cells, J Physiol, vol.120, pp.528-537, 1953.

H. Subramanian, K. Gupta, and H. Ali, Roles of Mas-related G proteincoupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases, J Allergy Clin Immunol, vol.138, pp.700-710, 2016.

K. Tatemoto, Y. Nozaki, and R. Tsuda, Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors, Biochem Biophys Res Commun, vol.349, pp.1322-1328, 2006.

L. Lu, M. Kulka, and L. D. Unsworth, Peptide-mediated mast cell activation: Ligand similarities for receptor recognition and protease-induced regulation, J Leukoc Biol, vol.102, pp.237-251, 2017.

M. Scheb-wetzel, M. Rohde, A. Bravo, and O. Goldmann, New insights into the antimicrobial effect of mast cells against Enterococcus faecalis, Infect Immun, vol.82, pp.4496-4507, 2014.

A. L. Mcgowen, L. P. Hale, C. P. Shelburne, S. N. Abraham, and H. F. Staats, The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen, Vaccine, vol.27, pp.3544-3552, 2009.

T. C. Theoharides, Neuroendocrinology of mast cells: Challenges and controversies, Exp Dermatol, vol.26, pp.751-759, 2017.

E. Friedberger, Theorien über die Anaphylaxie, Z Immunitätsforschung Exp Ther, vol.2, pp.208-224, 1909.

A. G. Osler, H. G. Randall, B. M. Hill, and Z. Ovary, Studies on the mechanism of hypersensitivity phenomena. III. The participation of complement in the formation of anaphylatoxin, J Exp Med, vol.110, pp.311-339, 1959.

E. H. Vallota and H. J. Muller-eberhard, Formation of C3a and C5a anaphylatoxins in whole human serum after inhibition of the anaphylatoxin inactivator, J Exp Med, vol.137, pp.1109-1123, 1973.

A. R. Johnson, T. E. Hugli, and H. J. Muller-eberhard, Release of histamine from rat mast cells by the complement peptides C3a and C5a, Immunology, vol.28, pp.1067-1080, 1975.

N. P. Gerard and C. Gerard, The chemotactic receptor for human C5a anaphylatoxin, Nature, vol.349, pp.614-617, 1991.

D. F. Legler, M. Loetscher, and S. A. Jones, Expression of high-and lowaffinity receptors for C3a on the human mast cell line, HMC-1, Eur J Immunol, vol.26, pp.753-758, 1996.

H. Ali, Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a, Immunol Lett, vol.128, pp.36-45, 2010.

W. Fureder, H. Agis, and M. Willheim, Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells, J Immunol, vol.155, pp.3152-3160, 1995.

J. T. Hartmann, M. Haap, H. G. Kopp, and H. P. Lipp, Tyrosine kinase inhibitors -A review on pharmacology, metabolism and side effects, Curr Drug Metab, vol.10, pp.470-481, 2009.

Y. Kubota, The effect of human anaphylatoxins and neutrophils on histamine release from isolated human skin mast cells, J Dermatol, vol.19, pp.19-26, 1992.

G. Nilsson, M. Johnell, and C. H. Hammer, C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway, J Immunol, vol.157, pp.1693-1698, 1996.

A. Soruri, J. Grigat, Z. Kiafard, and J. Zwirner, Mast cell activation is characterized by upregulation of a functional anaphylatoxin C5a receptor, BMC Immunol, vol.9, p.29, 2008.

T. Kajita and T. E. Hugli, Evidence for in vivo degradation of C3a anaphylatoxin by mast cell chymase. I. Nonspecific activation of rat peritoneal mast cells by C3ades Arg, Am J Pathol, vol.138, pp.1359-1369, 1991.

M. Mousli, T. E. Hugli, Y. Landry, and C. Bronner, A mechanism of action for anaphylatoxin C3a stimulation of mast cells, J Immunol, vol.148, pp.2456-2461, 1992.

B. Schafer, A. M. Piliponsky, and T. Oka, Mast cell anaphylatoxin receptor expression can enhance IgE-dependent skin inflammation in mice, J Allergy Clin Immunol, vol.131, pp.541-549, 2013.

R. M. Kedzierski and M. Yanagisawa, Endothelin system: The doubleedged sword in health and disease, Annu Rev Pharmacol Toxicol, vol.41, pp.851-876, 2001.

M. Metz, B. Schafer, M. Tsai, M. Maurer, and S. J. Galli, Evidence that the endothelin A receptor can enhance IgE-dependent anaphylaxis in mice, J Allergy Clin Immunol, vol.128, pp.424-426, 2011.

L. A. Schneider, S. M. Schlenner, T. B. Feyerabend, M. Wunderlin, and H. R. Rodewald, Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin, J Exp Med, vol.204, pp.2629-2639, 2007.

M. Maurer, J. Wedemeyer, and M. Metz, Mast cells promote homeostasis by limiting endothelin-1-induced toxicity, Nature, vol.432, pp.512-516, 2004.

W. C. Mustain, P. G. Rychahou, and B. M. Evers, The role of neurotensin in physiologic and pathologic processes, Curr Opin Endocrinol Diabetes Obes, vol.18, pp.75-82, 2011.

T. C. Theoharides, J. M. Stewart, A. Taracanova, P. Conti, and C. C. Zouboulis, Neuroendocrinology of the skin, Rev Endocr Metab Disord, vol.17, pp.287-294, 2016.

D. E. Cochrane, R. E. Carraway, and K. Harrington, HMC-1 human mast cells synthesize neurotensin (NT) precursor, secrete bioactive NT-like peptide(s) and express NT receptor NTS1, Inflamm Res, vol.60, pp.1139-1151, 2011.

L. H. Lazarus, M. H. Perrin, and M. R. Brown, Mast cell binding of neurotensin. I. Iodination of neurotensin and characterization of the interaction of neurotensin with mast cell receptor sites, J Biol Chem, vol.252, pp.7174-7179, 1977.

A. M. Piliponsky, C. C. Chen, and T. Nishimura, Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis, Nat Med, vol.14, pp.392-398, 2008.

R. Grisshammer and E. Hermans, Functional coupling with Galpha(q) and Galpha(i1) protein subunits promotes high-affinity agonist binding to the neurotensin receptor NTS-1 expressed in Escherichia coli, FEBS Lett, vol.493, pp.101-105, 2001.

K. D. Alysandratos, S. Asadi, and A. Angelidou, Neurotensin and CRH interactions augment human mast cell activation, PLoS ONE, vol.7, p.48934, 2012.

D. K. Grammatopoulos, Insights into mechanisms of corticotropinreleasing hormone receptor signal transduction, Br J Pharmacol, vol.166, pp.85-97, 2011.

A. M. Piliponsky, C. C. Chen, and M. A. Grimbaldeston, Mast cell-derived TNF can exacerbate mortality during severe bacterial infections in C57BL/6-KitW-sh/W-sh mice, Am J Pathol, vol.176, pp.926-938, 2010.

M. Kulka, C. H. Sheen, B. P. Tancowny, L. C. Grammer, and R. P. Schleimer, Neuropeptides activate human mast cell degranulation and chemokine production, Immunology, vol.123, pp.398-410, 2008.

T. Cao, N. P. Gerard, and S. D. Brain, Use of NK(1) knockout mice to analyze substance P-induced edema formation, Am J Physiol, vol.277, pp.476-481, 1999.

D. D. Le, D. Schmit, and S. Heck, Increase of mast cell-nerve association and neuropeptide receptor expression on mast cells in perennial allergic rhinitis, NeuroImmunoModulation, vol.23, pp.261-270, 2016.

H. P. Van-der-kleij, D. Ma, and F. A. Redegeld, Functional expression of neurokinin 1 receptors on mast cells induced by IL-4 and stem cell factor, J Immunol, vol.171, pp.2074-2079, 2003.

E. Azimi, V. B. Reddy, and K. C. Shade, Dual action of neurokinin-1 antagonists on Mas-related GPCRs, JCI Insight, vol.1, p.89362, 2016.

E. Azimi, V. B. Reddy, and P. Pereira, Substance P activates Masrelated G protein-coupled receptors to induce itch, J Allergy Clin Immunol, vol.140, pp.447-453, 2017.

A. Ottosson and L. Edvinsson, Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide, Cephalalgia, vol.17, pp.166-174, 1997.

T. C. Theoharides, K. D. Alysandratos, and A. Angelidou, Mast cells and inflammation, Biochim Biophys Acta, vol.1822, pp.21-33, 2012.

F. A. Russell, R. King, S. J. Smillie, X. Kodji, and S. D. Brain, Calcitonin generelated peptide: Physiology and pathophysiology, Physiol Rev, vol.94, pp.1099-1142, 2014.

A. F. Russo, Calcitonin gene-related peptide (CGRP): A new target for migraine, Annu Rev Pharmacol Toxicol, vol.55, pp.533-552, 2015.

E. Cutz, W. Chan, N. S. Track, A. Goth, and S. I. Said, Release of vasoactive intestinal polypeptide in mast cells by histamine liberators, Nature, vol.275, pp.661-662, 1978.

B. K. Wershil, C. W. Turck, and S. P. Sreedharan, Variants of vasoactive intestinal peptide in mouse mast cells and rat basophilic leukemia cells, Cell Immunol, vol.151, pp.369-378, 1993.

S. G. Smalley, P. A. Barrow, and N. Foster, Immunomodulation of innate immune responses by vasoactive intestinal peptide (VIP): Its therapeutic potential in inflammatory disease, Clin Exp Immunol, vol.157, pp.225-234, 2009.

T. Scholzen, C. A. Armstrong, and N. W. Bunnett, Neuropeptides in the skin: Interactions between the neuroendocrine and the skin immune systems, Exp Dermatol, vol.7, pp.81-96, 1998.

A. V. Keita, A. H. Carlsson, and M. Cigehn, Vasoactive intestinal polypeptide regulates barrier function via mast cells in human intestinal follicle-associated epithelium and during stress in rats, Neurogastroenterol Motil, vol.25, pp.406-417, 2013.

R. A. Dixon, B. K. Kobilka, and D. J. Strader, Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin, Nature, vol.321, pp.75-79, 1986.

C. K. Billington, R. B. Penn, I. P. Hall, and . Agonists, Handb Exp Pharmacol, vol.237, pp.23-40, 2017.

P. J. Barnes, Beta-adrenoceptors and asthma, Clin Exp Allergy, vol.23, pp.165-167, 1993.

T. J. Sullivan, K. L. Parker, W. Stenson, and C. W. Parker, Modulation of cyclic AMP in purified rat mast cells. I. Responses to pharmacologic, metabolic, and physical stimuli, J Immunol, vol.114, pp.1473-1479, 1975.

R. J. Lewis, L. Chachi, C. Newby, Y. Amrani, and P. Bradding, Bidirectional counterregulation of human lung mast cell and airway smooth muscle beta2 adrenoceptors, J Immunol, vol.196, pp.55-63, 2016.

J. M. Kulinski, R. Munoz-cano, and A. Olivera, Sphingosine-1-phosphate and other lipid mediators generated by mast cells as critical players in allergy and mast cell function, Eur J Pharmacol, vol.778, pp.56-67, 2016.

P. S. Jolly, M. Bektas, and A. Olivera, Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis, J Exp Med, vol.199, pp.959-970, 2004.

A. Olivera, K. Mizugishi, and A. Tikhonova, The sphingosine kinasesphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis, Immunity, vol.26, pp.287-297, 2007.

J. A. Boyce, Mast cells and eicosanoid mediators: A system of reciprocal paracrine and autocrine regulation, Immunol Rev, vol.217, pp.168-185, 2007.

S. A. Boehme, K. Franz-bacon, and E. P. Chen, Murine bone marrowderived mast cells express chemoattractant receptor-homologous molecule expressed on T-helper class 2 cells (CRTh2), Int Immunol, vol.21, pp.621-632, 2009.

Y. Taketomi, N. Ueno, and T. Kojima, Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2-DP1 receptor paracrine axis, Nat Immunol, vol.14, pp.554-563, 2013.

T. C. Moon, E. Campos-alberto, and T. Yoshimura, Expression of DP2 (CRTh2), a prostaglandin D(2) receptor, in human mast cells, PLoS ONE, vol.9, p.108595, 2014.

G. M. Gauvreau, R. M. Watson, O. Byrne, and P. M. , Protective effects of inhaled PGE2 on allergen-induced airway responses and airway inflammation, Am J Respir Crit Care Med, vol.159, pp.31-36, 1999.

C. Feng, E. M. Beller, S. Bagga, and J. A. Boyce, Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses, Blood, vol.107, pp.3243-3250, 2006.

K. Gomi, F. G. Zhu, and J. S. Marshall, Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism, J Immunol, vol.165, pp.6545-6552, 2000.

M. Serra-pages, A. Olivera, and R. Torres, E-prostanoid 2 receptors dampen mast cell degranulation via cAMP/PKA-mediated suppression of IgE-dependent signaling, J Leukoc Biol, vol.92, pp.1155-1165, 2012.

S. M. Duffy, G. Cruse, S. L. Cockerill, C. E. Brightling, and P. Bradding, Engagement of the EP2 prostanoid receptor closes the K+ channel KCa3.1 in human lung mast cells and attenuates their migration, Eur J Immunol, vol.38, pp.2548-2556, 2008.

L. J. Kay, W. W. Yeo, and P. T. Peachell, Prostaglandin E2 activates EP2 receptors to inhibit human lung mast cell degranulation, Br J Pharmacol, vol.147, pp.707-713, 2006.

Y. Kanaoka and J. A. Boyce, Cysteinyl leukotrienes and their receptors; emerging concepts, Allergy Asthma Immunol Res, vol.6, pp.288-295, 2014.

J. Agier, S. Rozalska, K. Wodz, and E. Brzezinska-blaszczyk, Leukotriene receptor expression in mast cells is affected by their agonists, Cell Immunol, vol.317, pp.37-47, 2017.

E. A. Mellor, A. Maekawa, K. F. Austen, and J. A. Boyce, Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells, Proc Natl Acad Sci USA, vol.98, pp.7964-7969, 2001.

E. A. Mellor, N. Frank, and D. Soler, Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: Functional distinction from CysLT1R, Proc Natl Acad Sci, vol.100, pp.11589-11593, 2003.

Y. Jiang, Y. Kanaoka, and C. Feng, Cutting edge: Interleukin 4-dependent mast cell proliferation requires autocrine/intracrine cysteinyl leukotriene-induced signaling, J Immunol, vol.177, pp.2755-2759, 2006.

K. A. Lundeen, B. Sun, L. Karlsson, and A. M. Fourie, Leukotriene B4 receptors BLT1 and BLT2: Expression and function in human and murine mast cells, J Immunol, vol.177, pp.3439-3447, 2006.

Y. Jiang, L. A. Borrelli, Y. Kanaoka, B. J. Bacskai, and J. A. Boyce, CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells, Blood, vol.110, pp.3263-3270, 2007.

H. Nishi, A. Pelleg, and E. S. Schulman, IgE receptor-mediated histamine release in human lung mast cells: Modulation by purinergic receptor ligands, Ann Clin Lab Sci, vol.46, pp.463-469, 2016.

V. Kondeti, N. Al-azzam, and E. Duah, Leukotriene D4 and prostaglandin E2 signals synergize and potentiate vascular inflammation in a mast cell-dependent manner through cysteinyl leukotriene receptor 1 and E-prostanoid receptor 3, J Allergy Clin Immunol, vol.137, pp.289-298, 2016.

C. L. Weller, S. J. Collington, and J. K. Brown, Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors, J Exp Med, vol.201, pp.1961-1971, 2005.

Y. Tsujimura, K. Obata, and K. Mukai, Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis, Immunity, vol.28, pp.581-589, 2008.

K. Arias, M. Baig, and M. Colangelo, Concurrent blockade of platelet-activating factor and histamine prevents life-threatening peanut-induced anaphylactic reactions, J Allergy Clin Immunol, vol.124, pp.301-302, 2009.

P. Vadas, M. Gold, and B. Perelman, Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis, N Engl J Med, vol.358, pp.28-35, 2008.

P. Gill, N. L. Jindal, A. Jagdis, and P. Vadas, Platelets in the immune response: Revisiting platelet-activating factor in anaphylaxis, J Allergy Clin Immunol, vol.135, pp.1424-1432, 2015.

N. Kajiwara, T. Sasaki, and P. Bradding, Activation of human mast cells through the platelet-activating factor receptor, J Allergy Clin Immunol, vol.125, pp.1137-1145, 2010.

N. Rudich, K. Ravid, and R. Sagi-eisenberg, Mast cell adenosine receptors function: A focus on the a3 adenosine receptor and inflammation, Front Immunol, vol.3, p.134, 2012.

R. A. Brown, D. Spina, and C. P. Page, Adenosine receptors and asthma, Br J Pharmacol, vol.153, issue.1, pp.446-456, 2008.

M. J. Cushley and S. T. Holgate, Adenosine-induced bronchoconstriction in asthma: Role of mast cell-mediator release, J Allergy Clin Immunol, vol.75, pp.272-278, 1985.

C. J. Meade, I. Dumont, and L. Worrall, Why do asthmatic subjects respond so strongly to inhaled adenosine?, Life Sci, vol.69, pp.1225-1240, 2001.

G. Gomez, V. Nardone, S. Lotfi-emran, W. Zhao, and L. B. Schwartz, Intracellular adenosine inhibits IgE-dependent degranulation of human skin mast cells, J Clin Immunol, vol.33, pp.1349-1359, 2013.

X. Hua, M. Kovarova, and K. D. Chason, Enhanced mast cell activation in mice deficient in the A2b adenosine receptor, J Exp Med, vol.204, pp.117-128, 2007.

G. Hasko, B. Csoka, Z. H. Nemeth, E. S. Vizi, and P. Pacher, A(2B) adenosine receptors in immunity and inflammation, Trends Immunol, vol.30, pp.263-270, 2009.

G. Gomez, W. Zhao, and L. B. Schwartz, Disparity in FcepsilonRI-induced degranulation of primary human lung and skin mast cells exposed to adenosine, J Clin Immunol, vol.31, pp.479-487, 2011.

C. H. Kuo, A. M. Collins, D. R. Boettner, Y. Yang, and S. J. Ono, Role of CCL7 in type I hypersensitivity reactions in murine experimental allergic conjunctivitis, J Immunol, vol.198, pp.645-656, 2017.

I. Halova, L. Draberova, and P. Draber, Mast cell chemotaxis -Chemoattractants and signaling pathways, Front Immunol, vol.3, p.119, 2012.

S. E. Boyden, A. Desai, and G. Cruse, Vibratory urticaria associated with a missense variant in ADGRE2, N Engl J Med, vol.374, pp.656-663, 2016.

T. P. Burris, L. A. Solt, and Y. Wang, Nuclear receptors and their selective pharmacologic modulators, Pharmacol Rev, vol.65, pp.710-778, 2013.

J. M. Olefsky, Nuclear receptor minireview series, J Biol Chem, vol.276, pp.36863-36864, 2001.

E. Oppong, N. Flink, and A. C. Cato, Molecular mechanisms of glucocorticoid action in mast cells, Mol Cell Endocrinol, vol.380, pp.119-126, 2013.

D. Leo, B. Esnal-zufiaurre, A. Collins, F. Critchley, H. Saunders et al., Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERbeta and glucocorticoid receptor, vol.6, p.667, 2017.

J. Zhou, D. F. Liu, and C. Liu, Glucocorticoids inhibit degranulation of mast cells in allergic asthma via nongenomic mechanism, Allergy, vol.63, pp.1177-1185, 2008.

E. Oppong, P. N. Hedde, and S. Sekula-neuner, Localization and dynamics of glucocorticoid receptor at the plasma membrane of activated mast cells, Small, vol.10, pp.1991-1998, 2014.

F. Tanriverdi, L. F. Silveira, G. S. Maccoll, and P. M. Bouloux, The hypothalamicpituitary-gonadal axis: Immune function and autoimmunity, J Endocrinol, vol.176, pp.293-304, 2003.

F. Jensen, M. Woudwyk, and A. Teles, Estradiol and progesterone regulate the migration of mast cells from the periphery to the uterus and induce their maturation and degranulation, PLoS ONE, vol.5, p.14409, 2010.

W. Chen, I. Beck, and W. Schober, Human mast cells express androgen receptors but treatment with testosterone exerts no influence on IgE-independent mast cell degranulation elicited by neuromuscular blocking agents, Exp Dermatol, vol.19, pp.302-304, 2010.

M. Vasiadi, D. Kempuraj, W. Boucher, D. Kalogeromitros, and T. C. Theoharides, Progesterone inhibits mast cell secretion, Int J Immunopathol Pharmacol, vol.19, pp.787-794, 2006.

X. J. Zhao, G. Mckerr, and Z. Dong, Expression of oestrogen and progesterone receptors by mast cells alone, but not lymphocytes, macrophages or other immune cells in human upper airways, Thorax, vol.56, pp.205-211, 2001.

O. Zierau, A. C. Zenclussen, and F. Jensen, Role of female sex hormones, estradiol and progesterone, in mast cell behavior, Front Immunol, vol.3, p.169, 2012.

M. A. Carey, J. W. Card, and J. W. Voltz, The impact of sex and sex hormones on lung physiology and disease: Lessons from animal studies, Am J Physiol Lung Cell Mol Physiol, vol.293, pp.272-278, 2007.

M. Butterworth, B. Mcclellan, and M. Allansmith, Influence of sex in immunoglobulin levels, Nature, vol.214, pp.1224-1225, 1967.

P. B. Medawar and E. M. Sparrow, The effects of adrenocortical hormones, adrenocorticotrophic hormone and pregnancy on skin transplantation immunity in mice, J Endocrinol, vol.14, pp.240-256, 1956.

R. S. Bonds and T. Midoro-horiuti, Estrogen effects in allergy and asthma, Curr Opin Allergy Clin Immunol, vol.13, pp.92-99, 2013.

M. Schatz and C. A. Camargo, The relationship of sex to asthma prevalence, health care utilization, and medications in a large managed care organization, Ann Allergy Asthma Immunol, vol.91, pp.553-558, 2003.

R. Corteling and A. Trifilieff, Gender comparison in a murine model of allergen-driven airway inflammation and the response to budesonide treatment, BMC Pharmacol, vol.4, p.4, 2004.

A. P. Ligeiro-de-oliveira, R. M. Oliveira-filho, Z. L. Da-silva, P. Borelli, and W. Tavares-de-lima, Regulation of allergic lung inflammation in rats: Interaction between estradiol and corticosterone, NeuroImmunoModulation, vol.11, pp.20-27, 2004.

M. Zaitsu, S. Narita, and K. C. Lambert, Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx, Mol Immunol, vol.44, pp.1977-1985, 2007.

S. Munoz-cruz, Y. Mendoza-rodriguez, K. E. Nava-castro, L. Yepez-mulia, and J. Morales-montor, Gender-related effects of sex steroids on histamine release and FcepsilonRI expression in rat peritoneal mast cells, J Immunol Res, p.351829, 2015.

E. R. Levin and . Minireview, Extranuclear steroid receptors: Roles in modulation of cell functions, Mol Endocrinol, vol.25, pp.377-384, 2011.

N. Meyer, K. Woidacki, M. Maurer, and A. C. Zenclussen, Safeguarding of fetal growth by mast cells and natural killer cells: Deficiency of one is counterbalanced by the other, Front Immunol, vol.8, p.711, 2017.

C. Mechlin and B. Kogan, Mast cells, estrogens, and cryptorchidism: A histological based review, Transl Androl Urol, vol.1, pp.97-102, 2012.

R. Sibilano, C. E. Pucillo, and G. Gri, Allergic responses and aryl hydrocarbon receptor novel pathway of mast cell activation, Mol Immunol, vol.63, pp.69-73, 2015.

K. Maaetoft-udsen, L. M. Shimoda, H. Frokiaer, and H. Turner, Aryl hydrocarbon receptor ligand effects in RBL2H3 cells, J Immunotoxicol, vol.9, pp.327-337, 2012.

R. Sibilano, B. Frossi, and M. Calvaruso, The aryl hydrocarbon receptor modulates acute and late mast cell responses, J Immunol, vol.189, pp.120-127, 2012.

Y. Zhou, H. Y. Tung, and Y. M. Tsai, Aryl hydrocarbon receptor controls murine mast cell homeostasis, Blood, vol.121, pp.3195-3204, 2013.

H. Kawasaki, H. W. Chang, and H. C. Tseng, A tryptophan metabolite, kynurenine, promotes mast cell activation through aryl hydrocarbon receptor, Allergy, vol.69, pp.445-452, 2014.

C. Pilz, T. Feyerabend, and J. Sonner, Normal mast cell numbers in the tissues of AhR-deficient mice, Exp Dermatol, vol.25, pp.62-63, 2015.

A. M. Lin, C. J. Rubin, and R. Khandpur, Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis, J Immunol, vol.187, pp.490-500, 2011.

O. J. De-boer, J. J. Van-der-meer, and P. Teeling, Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques, J Pathol, vol.220, pp.499-508, 2010.

C. Mathieu and L. Adorini, The coming of age of 1,25-dihydroxyvitamin D(3) analogs as immunomodulatory agents, Trends Mol Med, vol.8, pp.174-179, 2002.

N. Toyota, H. Sakai, H. Takahashi, Y. Hashimoto, and H. Iizuka, Inhibitory effect of 1 alpha,25-dihydroxyvitamin D3 on mast cell proliferation and A23187-induced histamine release, also accompanied by a decreased c-kit receptor, Arch Dermatol Res, vol.288, pp.709-715, 1996.

K. H. Yip, N. Kolesnikoff, and C. Yu, Mechanisms of vitamin D(3) metabolite repression of IgE-dependent mast cell activation, J Allergy Clin Immunol, vol.133, pp.1356-1364, 2014.

M. Shalita-chesner, R. Koren, and Y. A. Mekori, 1,25-Dihydroxyvitamin D3 enhances degranulation of mast cells, Mol Cell Endocrinol, vol.142, pp.49-55, 1998.

E. Baroni, M. Biffi, and F. Benigni, VDR-dependent regulation of mast cell maturation mediated by 1,25-dihydroxyvitamin D3, J Leukoc Biol, vol.81, pp.250-262, 2007.

L. Biggs, C. Yu, and B. Fedoric, Evidence that vitamin D(3) promotes mast cell-dependent reduction of chronic UVB-induced skin pathology in mice, J Exp Med, vol.207, pp.455-463, 2010.

J. C. Corton, S. P. Anderson, and A. Stauber, Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators, Annu Rev Pharmacol Toxicol, vol.40, pp.491-518, 2000.

H. Sugiyama, T. Nonaka, and T. Kishimoto, Peroxisome proliferatoractivated receptors are expressed in human cultured mast cells: A possible role of these receptors in negative regulation of mast cell activation, Eur J Immunol, vol.30, pp.3363-3370, 2000.

H. Sugiyama, T. Nonaka, and T. Kishimoto, Peroxisome proliferatoractivated receptors are expressed in mouse bone marrow-derived mast cells, FEBS Lett, vol.467, pp.259-262, 2000.

S. Paruchuri, Y. Jiang, and C. Feng, Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells, J Biol Chem, vol.283, pp.16477-16487, 2008.

M. Tachibana, K. Wada, and K. Katayama, Activation of peroxisome proliferator-activated receptor gamma suppresses mast cell maturation involved in allergic diseases, Allergy, vol.63, pp.1136-1147, 2008.

R. Behshad, K. D. Cooper, and N. J. Korman, A retrospective case series review of the peroxisome proliferator-activated receptor ligand rosiglitazone in the treatment of atopic dermatitis, Arch Dermatol, vol.144, pp.84-88, 2008.

Y. Hatano, M. Q. Man, and Y. Uchida, Murine atopic dermatitis responds to peroxisome proliferator-activated receptors alpha and beta/delta (but not gamma) and liver X receptor activators, J Allergy Clin Immunol, vol.125, pp.161-165, 2010.

Y. Zhang, X. Li, and S. Fang, Peroxisome proliferator-activated receptor gamma agonist suppresses mast cell maturation and induces apoptosis, Mol Med Rep, vol.16, pp.1793-1800, 2015.

P. L. Yao, J. L. Morales, F. J. Gonzalez, and J. M. Peters, Peroxisome proliferatoractivated receptor-beta/delta modulates mast cell phenotype, Immunology, vol.150, pp.456-467, 2017.

M. E. Bianchi and . Damps, PAMPs and alarmins: All we need to know about danger, J Leukoc Biol, vol.81, pp.1-5, 2007.

D. Bertheloot and L. E. Hmgb1, IL-1alpha, IL-33 and S100 proteins: Dual-function alarmins, Cell Mol Immunol, vol.14, pp.43-64, 2017.

K. Kandere-grzybowska, R. Letourneau, and D. Kempuraj, IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells, J Immunol, vol.171, pp.4830-4836, 2003.

K. Kandere-grzybowska, D. Kempuraj, J. Cao, C. L. Cetrulo, and T. C. Theoharides, Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin, Br J Pharmacol, vol.148, pp.208-215, 2006.

L. Hultner, S. Kolsch, and M. Stassen, In activated mast cells, IL-1 upregulates the production of several Th2-related cytokines including IL-9, J Immunol, vol.164, pp.5556-5563, 2000.

D. R. Nagarkar, J. A. Poposki, and M. R. Comeau, Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin, J Allergy Clin Immunol, vol.130, pp.225-232, 2012.

R. Saluja, M. Khan, M. K. Church, and M. Maurer, The role of IL-33 and mast cells in allergy and inflammation, Clin Transl Allergy, vol.5, p.33, 2015.

M. Iikura, H. Suto, and N. Kajiwara, IL-33 can promote survival, adhesion and cytokine production in human mast cells, Lab Invest, vol.87, pp.971-978, 2007.

J. X. Wang, S. Kaieda, and S. Ameri, IL-33/ST2 axis promotes mast cell survival via BCLXL, Proc Natl Acad Sci USA, vol.111, pp.10281-10286, 2014.

L. H. Ho, T. Ohno, and K. Oboki, IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcepsilonRI signals, J Leukoc Biol, vol.82, pp.1481-1490, 2007.

H. Y. Tung, B. Plunkett, S. K. Huang, and Y. Zhou, Murine mast cells secrete and respond to interleukin-33, J Interferon Cytokine Res, vol.34, pp.141-147, 2014.

A. Matsuda, Y. Okayama, and N. Terai, The role of interleukin-33 in chronic allergic conjunctivitis, Invest Ophthalmol Vis Sci, vol.50, pp.4646-4652, 2009.

R. Saluja, T. Hawro, J. Eberle, M. K. Church, and M. Maurer, Interleukin-33 promotes the proliferation of mouse mast cells through ST2/MyD88 and p38 MAPK-dependent and Kit-independent pathways, J Biol Regul Homeost Agents, vol.28, pp.575-585, 2014.

D. Moulin, O. Donze, and D. Talabot-ayer, Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells, Cytokine, vol.40, pp.216-225, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01715320

M. Komai-koma, F. Brombacher, and P. N. Pushparaj, Interleukin-33 amplifies IgE synthesis and triggers mast cell degranulation via interleukin-4 in naive mice, Allergy, vol.67, pp.1118-1126, 2012.

T. Y. Jang and Y. H. Kim, Interleukin-33 and mast cells bridge innate and adaptive immunity: From the allergologist's perspective, Int Neurourol J, vol.19, pp.142-150, 2015.

C. L. Hsu, C. V. Neilsen, and P. J. Bryce, IL-33 is produced by mast cells and regulates IgE-dependent inflammation, PLoS ONE, vol.5, p.11944, 2010.

D. Xu, H. R. Jiang, and P. Kewin, IL-33 exacerbates antigeninduced arthritis by activating mast cells, Proc Natl Acad Sci, vol.105, pp.10913-10918, 2008.

S. Drube, F. Kraft, and J. Dudeck, MK2/3 are pivotal for IL-33-induced and mast cell-dependent leukocyte recruitment and the resulting skin inflammation, J Immunol, vol.197, pp.3662-3668, 2016.

A. Taracanova, M. Alevizos, and A. Karagkouni, SP and IL-33 together markedly enhance TNF synthesis and secretion from human mast cells mediated by the interaction of their receptors, Proc Natl Acad Sci, vol.114, pp.4002-4009, 2017.

M. V. Andrade, S. Iwaki, and C. Ropert, Amplification of cytokine production through synergistic activation of NFAT and AP-1 following stimulation of mast cells with antigen and IL-33, Eur J Immunol, vol.41, pp.760-772, 2011.

T. Numata, T. Ito, T. Maeda, C. Egusa, and R. Tsuboi, IL-33 promotes ICAM-1 expression via NF-kB in murine mast cells, Allergol Int, vol.65, pp.158-165, 2016.

C. Galand, J. M. Leyva-castillo, and J. Yoon, IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells, J Allergy Clin Immunol, vol.138, pp.1356-1366, 2016.

L. C. Sjoberg, J. A. Gregory, S. E. Dahlen, G. P. Nilsson, and M. Adner, Interleukin-33 exacerbates allergic bronchoconstriction in the mice via activation of mast cells, Allergy, vol.70, pp.514-521, 2015.

R. Joulia, L. 'faqihi, F. E. Valitutti, S. Espinosa, and E. , IL-33 fine tunes mast cell degranulation and chemokine production at the single-cell level, J Allergy Clin Immunol, vol.140, pp.497-509, 2017.

M. Y. Jung, D. Smrz, and A. Desai, IL-33 induces a hyporesponsive phenotype in human and mouse mast cells, J Immunol, vol.190, pp.531-538, 2013.

E. Lefrancais, A. Duval, and E. Mirey, Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells, Proc Natl Acad Sci, vol.111, pp.15502-15507, 2014.

Z. Fu, M. Thorpe, and R. Alemayehu, Highly selective cleavage of cytokines and chemokines by the human mast cell chymase and neutrophil cathepsin G, J Immunol, vol.198, pp.1474-1483, 2017.

A. Roy, G. Ganesh, and H. Sippola, Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation, J Biol Chem, vol.289, pp.237-250, 2014.

I. Waern, A. Lundequist, G. Pejler, and S. Wernersson, Mast cell chymase modulates IL-33 levels and controls allergic sensitization in dust-mite induced airway inflammation, Mucosal Immunol, vol.6, pp.911-920, 2013.

D. Kaur, E. Gomez, and C. Doe, IL-33 drives airway hyperresponsiveness through IL-13-mediated mast cell: Airway smooth muscle crosstalk, Allergy, vol.70, pp.556-567, 2015.

H. Morita, K. Arae, and H. Unno, An interleukin-33-mast cellinterleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers, Immunity, vol.43, pp.175-186, 2015.

P. Salamon, I. Shefler, and I. Moshkovits, IL-33 and IgE stimulate mast cell production of IL-2 and regulatory T cell expansion in allergic dermatitis, Clin Exp Allergy, vol.47, pp.1409-1416, 2017.

F. Rivellese, J. Suurmond, and K. Habets, Ability of interleukin-33-and immune complex-triggered activation of human mast cells to down-regulate monocyte-mediated immune responses, Arthritis Rheumatol, vol.67, pp.2343-2353, 2015.

Y. Sha, J. Zmijewski, Z. Xu, and A. E. , HMGB1 develops enhanced proinflammatory activity by binding to cytokines, J Immunol, vol.180, pp.2531-2537, 2008.

M. Schiraldi, A. Raucci, and L. M. Munoz, HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4, J Exp Med, vol.209, pp.551-563, 2012.

V. Urbonaviciute, B. G. Furnrohr, and S. Meister, Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: Implications for the pathogenesis of SLE, J Exp Med, vol.205, pp.3007-3018, 2008.

E. Sick, S. Brehin, and P. Andre, Advanced glycation end products (AGEs) activate mast cells, Br J Pharmacol, vol.161, pp.442-455, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00515551

K. Hara, K. Iijima, and M. K. Elias, Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa, J Immunol, vol.192, pp.4032-4042, 2014.

M. A. Ullah, Z. Loh, and W. J. Gan, Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation, J Allergy Clin Immunol, vol.134, pp.440-450, 2014.

M. A. Willart, K. Deswarte, and P. Pouliot, Interleukin-1alpha controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33, J Exp Med, vol.209, pp.1505-1517, 2012.

E. Bulanova and S. Bulfone-paus, P2 receptor-mediated signaling in mast cell biology, Purinergic Signal, vol.6, pp.3-17, 2010.

S. Arandjelovic, K. R. Mckenney, S. S. Leming, and K. A. Mowen, ATP induces protein arginine deiminase 2-dependent citrullination in mast cells through the P2X7 purinergic receptor, J Immunol, vol.189, pp.4112-4122, 2012.

Y. Kurashima, T. Amiya, and T. Nochi, Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors, Nat Commun, vol.3, p.1034, 2012.

K. J. Wareham and E. P. Seward, P2X7 receptors induce degranulation in human mast cells, Purinergic Signal, vol.12, pp.235-246, 2016.

M. Idzko, H. Hammad, and M. Van-nimwegen, Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells, Nat Med, vol.13, pp.913-919, 2007.

R. O. Hynes, Integrins: Versatility, modulation, and signaling in cell adhesion, Cell, vol.69, pp.11-25, 1992.

W. R. Sperr, H. Agis, and K. Czerwenka, Differential expression of cell surface integrins on human mast cells and human basophils, Ann Hematol, vol.65, pp.10-16, 1992.

M. F. Gurish and K. F. Austen, Developmental origin and functional specialization of mast cell subsets, Immunity, vol.37, pp.25-33, 2012.

M. F. Gurish, H. Tao, and J. P. Abonia, Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing, J Exp Med, vol.194, pp.1243-1252, 2001.

K. Kanemaru, E. Noguchi, and T. Tokunaga, Tie2 signaling enhances mast cell progenitor adhesion to vascular cell adhesion molecule-1 (VCAM-1) through alpha4beta1 integrin, PLoS ONE, vol.10, p.144436, 2015.

M. Ciarlet, S. E. Crawford, and E. Cheng, VLA-2 (alpha2beta1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment, J Virol, vol.76, pp.1109-1123, 2002.

B. T. Edelson, T. P. Stricker, and Z. Li, Novel collectin/C1q receptor mediates mast cell activation and innate immunity, Blood, vol.107, pp.143-150, 2006.

M. Richter, S. J. Ray, and T. J. Chapman, Collagen distribution and expression of collagen-binding alpha1beta1 (VLA-1) and alpha2beta1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection, J Immunol, vol.178, pp.4506-4516, 2007.

J. Symowicz, B. P. Adley, and K. J. Gleason, Engagement of collagenbinding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells, Cancer Res, vol.67, pp.2030-2039, 2007.

G. F. Weber, M. A. Bjerke, and D. W. Desimone, Integrins and cadherins join forces to form adhesive networks, J Cell Sci, vol.124, pp.1183-1193, 2011.

A. R. De-fougerolles, A. G. Sprague, and C. L. Nickerson-nutter, Regulation of inflammation by collagen-binding integrins alpha-1beta1 and alpha2beta1 in models of hypersensitivity and arthritis, J Clin Invest, vol.105, pp.721-729, 2000.

B. T. Edelson, Z. Li, L. K. Pappan, and M. M. Zutter, Mast cell-mediated inflammatory responses require the alpha 2 beta 1 integrin, Blood, vol.103, pp.2214-2220, 2004.

D. Yamada, T. Kadono, Y. Masui, K. Yanaba, and S. Sato, beta7 Integrin controls mast cell recruitment, whereas alphaE integrin modulates the number and function of CD8 + T cells in immune complex-mediated tissue injury, J Immunol, vol.192, pp.4112-4121, 2014.

T. Oki, K. Eto, and K. Izawa, Evidence that integrin alpha IIb beta 3-dependent interaction of mast cells with fibrinogen exacerbates chronic inflammation, J Biol Chem, vol.284, pp.31463-31472, 2009.

T. Oki, J. Kitaura, and K. Eto, Integrin alphaIIbbeta3 induces the adhesion and activation of mast cells through interaction with fibrinogen, J Immunol, vol.176, pp.52-60, 2006.

V. Fowlkes, C. G. Wilson, W. Carver, and E. C. Goldsmith, Mechanical loading promotes mast cell degranulation via RGD-integrin dependent pathways, J Biomech, vol.46, pp.788-795, 2013.

I. Halova and P. Draber, Tetraspanins and transmembrane adaptor proteins as plasma membrane organizers-mast cell case, Front Cell Dev Biol, vol.4, p.43, 2016.

S. Levy and T. Shoham, The tetraspanin web modulates immune-signalling complexes, Nat Rev Immunol, vol.5, pp.136-148, 2005.

C. M. Termini and J. M. Gillette, Tetraspanins function as regulators of cellular signaling, Front Cell Dev Biol, vol.5, p.34, 2017.

S. Levy and T. Shoham, Protein-protein interactions in the tetraspanin web, Physiology (Bethesda), vol.20, pp.218-224, 2005.

M. E. Hemler, Targeting of tetraspanin proteins-potential benefits and strategies, Nat Rev Drug Discov, vol.7, pp.747-758, 2008.

J. H. Kersey, T. W. Lebien, and C. S. Abramson, P-24: A human leukemiaassociated and lymphohemopoietic progenitor cell surface structure identified with monoclonal antibody, J Exp Med, vol.153, pp.726-731, 1981.

J. C. Qi, J. Wang, and S. Mandadi, Human and mouse mast cells use the tetraspanin CD9 as an alternate interleukin-16 receptor, Blood, vol.107, pp.135-142, 2006.

I. Halova, L. Draberova, and M. Bambouskova, Cross-talk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis, J Biol Chem, vol.288, pp.9801-9814, 2013.

H. Agis, W. Fureder, and H. C. Bankl, Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes, Immunology, vol.87, pp.535-543, 1996.

R. Lapalombella, Y. Y. Yeh, and L. Wang, Tetraspanin CD37 directly mediates transduction of survival and apoptotic signals, Cancer Cell, vol.21, pp.694-708, 2012.

J. L. Wee, K. E. Schulze, and E. L. Jones, Tetraspanin CD37 regulates beta2 integrin-mediated adhesion and migration in neutrophils, J Immunol, vol.195, pp.5770-5779, 2015.

H. Lee, S. Bae, and J. Jang, CD53, a suppressor of inflammatory cytokine production, is associated with population asthma risk via the functional promoter polymorphism -1560 C>T, Biochim Biophys Acta, vol.1830, pp.3011-3018, 2013.

J. H. Pedersen-lane, R. B. Zurier, and D. A. Lawrence, Analysis of the thiol status of peripheral blood leukocytes in rheumatoid arthritis patients, J Leukoc Biol, vol.81, pp.934-941, 2007.

D. O. Azorsa, J. A. Hyman, and J. E. Hildreth, CD63/Pltgp40: A platelet activation antigen identical to the stage-specific, melanoma-associated antigen ME491, Blood, vol.78, pp.280-284, 1991.

B. Atkinson, C. S. Ernst, and B. F. Ghrist, Monoclonal antibody to a highly glycosylated protein reacts in fixed tissue with melanoma and other tumors, Hybridoma, vol.4, pp.243-255, 1985.

E. F. Knol, F. P. Mul, H. Jansen, J. Calafat, and D. Roos, Monitoring human basophil activation via CD63 monoclonal antibody 435, J Allergy Clin Immunol, vol.88, pp.328-338, 1991.

I. Munoz, L. Danelli, and J. Claver, Kinesin-1 controls mast cell degranulation and anaphylaxis through PI3K-dependent recruitment to the granular Slp3/Rab27b complex, J Cell Biol, vol.215, pp.203-216, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01415529

T. Schafer, P. Starkl, C. Allard, R. M. Wolf, and T. Schweighoffer, A granular variant of CD63 is a regulator of repeated human mast cell degranulation, Allergy, vol.65, pp.1242-1255, 2010.

J. Schroder, R. Lullmann-rauch, and N. Himmerkus, Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function, Mol Cell Biol, vol.29, pp.1083-1094, 2009.

S. Kraft, T. Fleming, and J. M. Billingsley, Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo, J Exp Med, vol.201, pp.385-396, 2005.

T. J. Fleming, E. Donnadieu, and C. H. Song, Negative regulation of Fc epsilon RI-mediated degranulation by CD81, J Exp Med, vol.186, pp.1307-1314, 1997.

H. Abdala-valencia, P. J. Bryce, and R. P. Schleimer, Tetraspanin CD151 is a negative regulator of FcepsilonRI-mediated mast cell activation, J Immunol, vol.195, pp.1377-1387, 2015.

S. N. Abraham and A. L. St-john, Mast cell-orchestrated immunity to pathogens, Nat Rev Immunol, vol.10, pp.440-452, 2010.

W. Beghdadi, L. C. Madjene, and M. Benhamou, Mast cells as cellular sensors in inflammation and immunity, Front Immunol, vol.2, p.37, 2011.

S. J. Galli, M. Grimbaldeston, and M. Tsai, Immunomodulatory mast cells: Negative, as well as positive, regulators of immunity, Nat Rev Immunol, vol.8, pp.478-486, 2008.

L. C. Madjene, M. Pons, and L. Danelli, Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies, Mol Immunol, vol.63, pp.86-93, 2015.

B. Frossi, F. Mion, C. Tripodo, M. P. Colombo, and C. E. Pucillo, Rheostatic functions of mast cells in the control of innate and adaptive immune responses, Trends Immunol, vol.38, pp.648-656, 2017.

D. F. Dwyer, N. A. Barrett, and K. F. Austen, Expression profiling of constitutive mast cells reveals a unique identity within the immune system, Nat Immunol, vol.17, pp.878-887, 2016.

E. Motakis, S. Guhl, and Y. Ishizu, Redefinition of the human mast cell transcriptome by deep-CAGE sequencing, Blood, vol.123, pp.58-67, 2014.

F. A. Redegeld, Y. Yu, S. Kumari, N. Charles, and U. Blank, Non-IgE mediated mast cell activation, Immunol Rev, vol.282, pp.87-113, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02323281