C. Maertens-de-noordhout, B. Devleesschauwer, F. J. Angulo, G. Verbeke, J. Haagsma et al., The global burden of listeriosis: a systematic review and meta-analysis, Lancet Infect Dis, vol.14, issue.11, p.25241232, 2014.

C. Charlier, É. Perrodeau, A. Leclercq, B. Cazenave, B. Pilmis et al., Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study, Lancet Infect Dis, vol.17, issue.5, pp.30521-30528, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01475849

R. H. Orsi, . Bakker-hc-de, and M. Wiedmann, Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics, Int J Med Microbiol, vol.301, issue.2, pp.79-96, 2011.

K. Kamisango, I. Saiki, Y. Tanio, H. Okumura, Y. Araki et al., Structures and biological activities of peptidoglycans of Listeria monocytogenes and Propionibacterium acnes, J Biochem, vol.92, issue.1, pp.23-33, 1982.

S. Brown, S. Maria, J. P. Walker, and S. , Wall Teichoic Acids of Gram-Positive Bacteria, Annu Rev Microbiol [Internet], vol.67, issue.1, pp.313-349, 2013.

E. Sewell and E. D. Brown, Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics, J Antibiot (Tokyo), vol.67, issue.1, pp.43-51, 2014.

X. Zhu, D. Liu, A. K. Singh, R. Drolia, X. Bai et al., Tunicamycin Mediated Inhibition of Wall Teichoic Acid Affects Staphylococcus aureus and Listeria monocytogenes Cell Morphology, Biofilm Formation and Virulence, Front Microbiol, vol.9, pp.1-18, 2018.

Y. Shen, S. Boulos, E. Sumrall, B. Gerber, A. Julian-rodero et al., Structural and functional diversity in Listeria cell wall teichoic acids, J Biol Chem, vol.292, issue.43, pp.17832-17876, 2017.

K. Uchikawa, I. Sekikawa, and I. Azuma, Structural studies on teichoic acids in cell walls of several serotypes of Listeria monocytogenes, J Biochem, vol.99, issue.2, pp.315-342, 1986.

N. W. Hether and L. L. Jackson, Lipoteichoic acid from Listeria monocytogenes, J Bacteriol, vol.156, issue.2, pp.809-826, 1983.

I. Campeotto, M. G. Percy, J. T. Macdonald, A. Forster, P. S. Freemont et al., Structural and Mechanistic Insight into the Listeria monocytogenes Two-Enzyme Lipoteichoic Acid Synthesis System, J Biol Chem, vol.289, issue.41, pp.0-32, 2014.

J. Rismondo, M. G. Percy, and A. Gründling, Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation, J Biol Chem, vol.293, issue.9, pp.3293-306, 2018.

F. C. Neuhaus and J. Baddiley, A Continuum of Anionic Charge: Structures and Functions of D-Alanyl-Teichoic Acids in Gram-Positive Bacteria, Microbiol Mol Biol Rev, vol.67, issue.4, p.686, 2003.

R. Jonquières, Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria, vol.34, pp.902-916, 1999.

M. G. Percy, E. Karinou, and A. J. Webb, Grü ndling A. Identification of a lipoteichoic acid glycosyltransferase enzyme reveals that GW-domain containing proteins can be retained in the cell wall of Listeria monocytogenes in the absence of lipoteichoic acid or its modifications, J Bacteriol, vol.198, issue.15, pp.116-132, 2016.

. Vá, M. Kuhn, P. Berche, T. Chakraborty, G. Domi et al., Listeria Pathogenesis and Molecular Virulence Determinants Listeria Pathogenesis and Molecular Virulence Determinants, Clin Microbiol Rev, vol.14, issue.3, pp.584-640, 2001.

D. Liu, Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen, J Med Microbiol, vol.55, issue.6, pp.645-59, 2006.

S. Kilcher, P. Studer, C. Muessner, J. Klumpp, and M. J. Loessner, Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria, Proc Natl Acad Sci, vol.115, issue.3, pp.567-72, 2018.

X. H. Lei, F. Fiedler, Z. Lan, and S. Kathariou, A novel serotype-specific gene cassette (gltA-gltB) is required for expression of teichoic acid-associated surface antigens in Listeria monocytogenes of serotype 4b, J Bacteriol, vol.183, issue.4, pp.1133-1142, 2001.

C. Weidenmaier, J. F. Kokai-kun, T. Chanturiya, H. Kalbacher, and M. Gross, Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections, Nat Med, vol.10, issue.3, pp.243-248, 2004.

J. Pizarro-cerda and A. Ku, Entry of Listeria monocytogenes in Mammalian Epithelial Cells: an updated view, Cold Spring Harb Perspect Med, pp.1-18, 2015.

C. Vessey, J. Wilding, N. Folarin, . Hirano, . Shinji et al., Altered expression and function of E-cadherin in cervical intraepithelial neoplasia and invasive squamous cell carcinoma, J Pathol, vol.176, pp.151-160, 1995.

M. Lecuit, S. Dramsi, C. Gottardi, M. Fedor-chaiken, B. Gumbiner et al., A single amino acid in Ecadherin responsible for host specificity towards the human pathogen Listeria monocytogenes, EMBO J, vol.18, issue.14, pp.3956-63, 1999.

A. P. Frei, O. Jeon, S. Kilcher, H. Moest, L. M. Henning et al., Direct identification of ligand-receptor interactions on living cells and tissues, Nat Biotechnol, vol.30, issue.10, pp.997-1001, 2012.

S. J. Labrie, J. E. Samson, and S. Moineau, Bacteriophage resistance mechanisms, Nat Rev Microbiol, vol.8, issue.5, pp.317-344, 2010.

C. Kuenne, A. Billion, M. A. Mraheil, A. Strittmatter, R. Daniel et al., Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome, BMC Genomics, vol.14, issue.1, p.47, 2013.

M. Hupfeld, D. Trasanidou, L. Ramazzini, J. Klumpp, M. J. Loessner et al., A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage, Nucleic Acids Res, vol.46, issue.13, pp.6920-6953, 2018.

D. Chassaing and F. Auvray, The lmo1078 gene encoding a putative UDP-glucose pyrophosphorylase is involved in growth of Listeria monocytogenes at low temperature, FEMS Microbiol Lett, vol.275, p.17666069, 2007.

N. Autret, I. Dubail, P. Trieu-cuot, P. Berche, and A. Charbit, Identification of New Genes Involved in the Virulence of Listeria monocytogenes by Signature-Tagged Transposon Mutagenesis, Infect Immun, vol.69, issue.4, pp.2054-65, 2001.

P. E. Orndorff, Use of bacteriophage to target bacterial surface structures required for virulence: a systematic search for antibiotic alternatives, Curr Genet, vol.62, issue.4, p.27113766, 2016.

J. G. Mccoy, E. Bitto, C. A. Bingman, G. E. Wesenberg, R. M. Bannen et al., Structure and Dynamics of UDP-Glucose Pyrophosphorylase from Arabidopsis thaliana with Bound UDP-Glucose and UTP, J Mol Biol, vol.366, issue.3, pp.830-871, 2007.

L. Braun, S. Dramsi, P. Dehoux, H. Bierne, G. Lindahl et al., InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association, Mol Microbiol, vol.25, pp.285-94, 1997.

R. Jonquières, J. Pizarro-cerda, and P. Cossart, Synergy between the N-and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes, Mol Microbiol, vol.42, issue.4, p.11737639, 2001.

C. Fang, T. Cao, C. Cheng, Y. Xia, Y. Shan et al., Activation of PrfA results in overexpression of virulence factors but does not rescue the pathogenicity of Listeria monocytogenes M7, J Med Microbiol, vol.64, issue.8, pp.818-845, 2015.

N. Khelef, M. Lecuit, H. Bierne, and P. Cossart, Species specificity of the Listeria monocytogenes InlB protein, Cell Microbiol, vol.8, issue.3, p.16469057, 2006.

G. Gessain, Y. Tsai, L. Travier, M. Bonazzi, S. Grayo et al., PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes, vol.212, pp.165-183, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01128770

D. G. Brockstedt, M. A. Giedlin, M. L. Leong, K. S. Bahjat, Y. Gao et al., Listeria-based cancer vaccines that segregate immunogenicity from toxicity, Proc Natl Acad Sci, vol.101, issue.38, pp.13832-13837, 2004.

A. E. Clatworthy, E. Pierson, and D. T. Hung, Targeting virulence: a new paradigm for antimicrobial therapy, Nat Chem Biol [Internet], vol.3, issue.9, pp.541-549, 2007.

M. G. Pucciarelli, H. Bierne, and F. G. Portillo, The Cell Wall of Listeria monocytogenes and its Role in Pathogenicity. List Monocytogenes Pathog Host Response, pp.81-110, 2007.

J. Klumpp, T. Staubli, S. Schmitter, M. Hupfeld, D. E. Fouts et al., Genome Sequences of Three Frequently Used Listeria monocytogenes and Listeria ivanovii Strains, Genome Announc, vol.2, issue.2, pp.4-5, 2014.

E. Sumrall, J. Klumpp, Y. Shen, and M. J. Loessner, Genome Sequences of Five Nonvirulent Listeria monocytogenes Serovar 4 Strains, Genome Announc, vol.4, issue.2, pp.179-195, 2016.

M. J. Loessner, R. B. Inman, P. Lauer, and R. Calendar, Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution

, Mol Microbiol, vol.35, issue.2, pp.324-364, 2000.

J. Klumpp, J. Dorscht, R. Lurz, R. Bielmann, M. Wieland et al., The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: A model for the SPO1-like myoviruses of gram-positive bacteria, J Bacteriol, vol.190, issue.17, pp.5753-65, 2008.

, OIE Terrestrial Manual. LABORATORY METHODOLOGIES FOR BACTERIAL ANTIMICROBIAL SUSCEPTIBILITY TESTING. OIE Ref Lab Antimicrob Resist, 2012.

P. Lauer, M. Chow, and M. J. Loessner, Portnoy a, Calendar R. Construction, characterization, and use of two Listeria monocytogenes site-specific pahge integration vectors, J Bacteriol, vol.184, issue.15, pp.4177-86, 2002.

A. Grundling, L. S. Burrack, H. Bouwer, and D. E. Higgins, Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence, Proc Natl Acad Sci, vol.101, issue.33, pp.12318-12341, 2004.

H. Seeliger and K. Höhne, Serotyping of Listeria monocytogenes and Related Species, Methods Microbiol, 1979.

L. Braun, H. Ohayon, and C. P. , The InlB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells, Mol Microbiol, vol.27, issue.5, p.9535096, 1998.

M. Schmelcher, T. Shabarova, M. R. Eugster, F. Eichenseher, V. S. Tchang et al., Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains, Appl Environ Microbiol, vol.76, issue.17, pp.5745-56, 2010.

C. Weidenmaier, A. Peschel, Y. Xiong, K. Dietz, and M. R. Yeaman, Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis, J Infect Dis, vol.191, issue.10, pp.1771-1778, 2005.

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, p.90188, 1992.

A. J. Webb, M. Karatsa-dodgson, and G. , Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in listeria monocytogenes, Mol Microbiol, vol.74, issue.2, p.19682249, 2009.

A. Grundling and O. Schneewind, Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus, Proc Natl Acad Sci, vol.104, issue.20, pp.8478-83, 2007.

S. Morath, A. Geyer, and T. Hartung, Brief Definitive Report Structure-Function Relationship of Cytokine Induction by Lipoteichoic Acid from Staphylococcus aureus, J Exp Med, vol.193, issue.3, pp.393-98, 2001.

S. Morath, A. Stadelmaier, A. Geyer, R. R. Schmidt, and T. Hartung, Brief Definitive Report Synthetic Lipoteichoic Acid from Staphylococcus aureus Is a Potent Stimulus of Cytokine Release, J Exp Med, vol.195, issue.12, pp.1653-1693, 2002.

S. Morath, A. Geyer, I. Spreitzer, C. Hermann, and T. Hartung, Structural decomposition and heterogeneity of commercial lipoteichoic acid preparations, Infect Immun, vol.70, issue.2, pp.938-982, 2002.