J. C. Barrett, D. G. Clayton, and P. Concannon,

, Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes, Nat Genet, vol.41, pp.703-707, 2009.

A. Huber, F. Menconi, S. Corathers, E. M. Jacobson, and Y. Tomer, Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms, Endocr Rev, vol.29, pp.697-725, 2008.

A. Hasham and Y. Tomer, The recent rise in the frequency of type 1 diabetes: who pulled the trigger?, J Autoimmun, pp.37-38, 2011.

A. J. Macfarlane, A. Strom, and F. W. Scott, Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes, Mamm Genome, vol.20, pp.624-632, 2009.

V. K. Rakyan, H. Beyan, and T. A. Down, Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis, PLoS Genet, 2011.

M. Stefan, W. Zhang, C. E. Yi, Z. Tomer, and Y. , DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology, J Autoimmun, vol.50, pp.33-37, 2014.

G. Disanto, J. Vcelakova, and J. Pakpoor, DNA methylation in monozygotic quadruplets affected by type 1 diabetes, Diabetologia, vol.56, pp.2093-2095, 2013.

M. P. Belot, D. Fradin, and N. Mai, CpG methylation changes within the IL2RA promoter in type 1 diabetes of childhood onset, PLoS One, issue.8, p.68093, 2013.

D. Fradin, L. Fur, S. Mille, and C. , Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes, PLoS One, vol.7, p.36278, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02329970

S. Griffiths-jones, R. J. Grocock, S. Van-dongen, A. Bateman, and A. J. Enright, miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Res, pp.140-144, 2006.

A. Doi, I. H. Park, and B. Wen, Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts, Nat Genet, vol.41, pp.1350-1353, 2009.

M. J. Aryee, Z. Wu, and C. Ladd-acosta, Accurate genome-scale percentage DNA methylation estimates from microarray data, Biostatistics, pp.12-197, 2011.

R. A. Irizarry, C. Ladd-acosta, and B. Carvalho, Comprehensive high-throughput arrays for relative methylation (CHARM), Genome Res, vol.18, pp.780-790, 2008.

M. Kanehisa, . The, and . Database, Novartis Found Symp, vol.247, pp.244-52, 2002.

G. Dennis, B. T. Sherman, and D. A. Hosack, DAVID: database for annotation, visualization, and integrated discovery, Genome Biol, vol.4, p.3, 2003.

M. Kagami, M. J. O'sullivan, and A. J. Green, The IG-DMR and the MEG3-DMR at human chromosome 14q32.2: hierarchical interaction and distinct functional properties as imprinting control centers, PLoS Genet, issue.6, p.1000992, 2010.

J. Brandt, A. M. Veith, and J. N. Volff, A family of neofunctionalized Ty3/gypsy retrotransposon genes in mammalian genomes, Cytogenet Genome Res, vol.110, pp.307-317, 2005.

Y. Sekita, H. Wagatsuma, and K. Nakamura, Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta, Nat Genet, vol.40, pp.243-248, 2008.

C. G. Bell, A. E. Teschendorff, V. K. Rakyan, A. P. Maxwell, S. Beck et al., Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus, BMC Med Genomics, vol.3, p.33, 2010.

, Pediatric Diabetes, 2016.

M. F. Fraga, E. Ballestar, and M. F. Paz, Epigenetic differences arise during the lifetime of monozygotic twins, Proc Natl Acad Sci, vol.102, pp.10604-10609, 2005.

C. G. Bell, S. Finer, and C. M. Lindgren, Integrated genetic and epigenetic analysis identifies haplotypespecific methylation in the FTO type 2 diabetes and obesity susceptibility locus, PLoS One, issue.5, p.14040, 2010.

A. P. Feinberg, R. A. Irizarry, and D. Fradin, Personalized epigenomic signatures that are stable over time and covary with body mass index, Sci Transl Med, issue.2, pp.49-67, 2010.

B. M. Javierre, A. F. Fernandez, and J. Richter, Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus, Genome Res, vol.20, pp.170-179, 2010.

A. Nguyen, T. A. Rauch, G. P. Pfeifer, and V. W. Hu, Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain, FASEB J, vol.24, pp.3036-3051, 2010.

S. T. Da-rocha, C. A. Edwards, M. Ito, T. Ogata, and F. Ac, Genomic imprinting at the mammalian Dlk1-Dio3 domain, Trends Genet, vol.24, pp.306-316, 2008.

E. Davis, F. Caiment, and X. Tordoir, RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus, Curr Biol, vol.15, pp.743-749, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021186

H. Seitz, N. Youngson, and S. P. Lin, Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene, Nat Genet, vol.34, pp.261-262, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00022443

J. C. Carrington and A. V. , Role of microRNAs in plant and animal development, Science, vol.301, pp.336-338, 2003.

D. P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, vol.136, pp.215-233, 2009.

M. A. Menser, J. M. Forrest, and R. D. Bransby, Rubella infection and diabetes mellitus, Lancet, vol.1978, pp.57-60

L. C. Stene, J. Ulriksen, P. Magnus, and G. Joner, Use of cod liver oil during pregnancy associated with lower risk of type I diabetes in the offspring, Diabetologia, vol.43, pp.1093-1098, 2000.

S. Hummel and A. G. Ziegler, Early determinants of type 1 diabetes: experience from the BABYDIAB and BABYDIET studies, Am J Clin Nutr, pp.1821-1823, 2011.

H. Kallionpaa, E. Laajala, and V. Oling, Standard of hygiene and immune adaptation in newborn infants, Clin Immunol, vol.155, pp.136-147, 2014.

S. K. Murphy, Z. Huang, and C. Hoyo, Differentially methylated regions of imprinted genes in prenatal, perinatal and postnatal human tissues, PLoS One, vol.7, p.40924, 2012.

R. P. Talens, D. I. Boomsma, and T. E. , Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology, FASEB J, vol.24, pp.3135-3144, 2010.

H. Cui, M. Cruz-correa, and F. M. Giardiello, Loss of IGF2 imprinting: a potential marker of colorectal cancer risk, Science, vol.299, pp.1753-1755, 2003.

T. Sakatani, A. Kaneda, and C. A. Iacobuzio-donahue, Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice, Science, vol.307, pp.1976-1978, 2005.

C. Wallace, D. J. Smyth, M. Maisuria-armer, N. M. Walker, J. A. Todd et al., The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes, Nat Genet, vol.42, pp.68-71, 2010.

Y. Liu, M. J. Aryee, and L. Padyukov, Epigenomewide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis, Nat Biotechnol, vol.31, pp.142-147, 2013.

K. Kerkel, A. Spadola, and E. Yuan, Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation, Nat Genet, vol.40, pp.904-908, 2008.

J. R. Gibbs, M. P. Van-der-brug, and D. G. Hernandez, Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain, PLoS Genet, issue.6, p.1000952, 2010.