L. F. Gebert and I. J. Macrae, Regulation of microRNA function in animals, Nat. Rev. Mol. Cell Biol, vol.20, pp.21-37, 2019.

M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin et al., Widespread changes in protein synthesis induced by microRNAs, Nature, vol.455, pp.58-63, 2008.

R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res, vol.19, pp.92-105, 2009.

X. Chen, H. Liang, J. Zhang, K. Zen, and C. Zhang, Secreted microRNAs: A new form of intercellular communication, Trends Cell Biol, vol.22, pp.125-132, 2012.

X. Qin, H. Xu, W. Gong, and W. Deng, The Tumor Cytosol miRNAs, Fluid miRNAs, and Exosome miRNAs in Lung Cancer, Front. Oncol, vol.4, 2014.

C. Chen, R. Tan, L. Wong, R. Fekete, and J. Halsey, Quantitation of microRNAs by real-time RT-qPCR, Methods Mol. Biol, vol.687, pp.113-134, 2011.

A. D. Kelly and J. Issa, The promise of epigenetic therapy: Reprogramming the cancer epigenome, Curr. Opin. Genet. Dev, vol.42, pp.68-77, 2017.

E. Seto and M. Yoshida, Erasers of Histone Acetylation: The Histone Deacetylase Enzymes, Cold Spring Harb. Perspect. Biol, vol.6, 2014.

L. Chen, W. Fischle, E. Verdin, and W. C. Greene, Duration of nuclear NF-kappaB action regulated by reversible acetylation, Science, vol.293, pp.1653-1657, 2001.

L. Gaughan, I. R. Logan, S. Cook, D. E. Neal, and C. N. Robson, Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor, J. Biol. Chem, vol.277, pp.25904-25913, 2002.

W. Gu and R. G. Roeder, Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain, Cell, vol.90, pp.595-606, 1997.

J. W. Jeong, M. K. Bae, M. Y. Ahn, S. H. Kim, T. K. Sohn et al., Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation, Cell, vol.111, pp.709-720, 2002.

M. A. Martinez-balbas, U. M. Bauer, S. J. Nielsen, A. Brehm, and T. Kouzarides, Regulation of E2F1 activity by acetylation, EMBO J, vol.19, pp.662-671, 2000.

J. H. Patel, Y. Du, P. G. Ard, C. Phillips, B. Carella et al., The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60, Mol. Cell. Biol, vol.24, pp.10826-10834, 2004.

C. Wang, M. Fu, R. H. Angeletti, L. Siconolfi-baez, A. T. Reutens et al., Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity, J. Biol. Chem, vol.276, pp.18375-18383, 2001.

J. J. Kovacs, P. J. Murphy, S. Gaillard, X. Zhao, J. T. Wu et al., HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor, Mol. Cell, vol.18, pp.601-607, 2005.

Z. L. Yuan, Y. J. Guan, D. Chatterjee, and Y. E. Chin, Stat3 dimerization regulated by reversible acetylation of a single lysine residue, Science, vol.307, pp.269-273, 2005.

Y. Zhang, N. Li, C. Caron, G. Matthias, D. Hess et al., HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo, EMBO J, vol.22, pp.1168-1179, 2003.

N. Martinet and P. Bertrand, Interpreting clinical assays for histone deacetylase inhibitors, Cancer Manag. Res, vol.3, pp.117-141, 2011.

P. A. Marks, Discovery and development of SAHA as an anticancer agent, Oncogene, vol.26, pp.1351-1356, 2007.

R. M. Poole, Belinostat: First global approval, Drugs, vol.74, pp.1543-1554, 2014.

P. G. Richardson, J. P. Laubach, S. Lonial, P. Moreau, S. S. Yoon et al., Panobinostat: A novel pan-deacetylase inhibitor for the treatment of relapsed or relapsed and refractory multiple myeloma, Expert Rev. Anticancer Ther, vol.15, pp.737-748, 2015.

T. Vanhaecke, P. Papeleu, G. Elaut, and V. Rogiers, Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: Toxicological point of view, Curr. Med. Chem, vol.11, pp.1629-1643, 2004.

C. Grant, F. Rahman, R. Piekarz, C. Peer, R. Frye et al., Romidepsin: A new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors, Expert Rev. Anticancer Ther, vol.10, pp.997-1008, 2010.

S. P. Iyer and F. F. Foss, Romidepsin for the Treatment of Peripheral T-Cell Lymphoma, Oncologist, vol.20, pp.1084-1091, 2015.

B. S. Mann, J. R. Johnson, M. H. Cohen, R. Justice, and R. Pazdur, FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma, Oncologist, vol.12, pp.1247-1252, 2007.

L. M. Krug, H. L. Kindler, H. Calvert, C. Manegold, A. S. Tsao et al., Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): A phase 3, double-blind, randomised, placebo-controlled trial, Lancet Oncol, vol.16, pp.447-456, 2015.

H. Nakajima, Y. B. Kim, H. Terano, M. Yoshida, and S. Horinouchi, FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor, Exp. Cell Res, vol.241, pp.126-133, 1998.

H. Ueda, H. Nakajima, Y. Hori, T. Goto, and M. Okuhara, Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968, on Ha-ras transformed NIH3T3 cells, Biosci. Biotechnol. Biochem, vol.58, pp.1579-1583, 1994.

R. L. Piekarz, R. Frye, M. Turner, J. J. Wright, S. L. Allen et al., Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma, J. Clin. Oncol, vol.27, pp.5410-5417, 2009.

B. Coiffier, B. Pro, H. M. Prince, F. Foss, L. Sokol et al., Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy, J. Clin. Oncol, vol.30, pp.631-636, 2012.

O. A. O'connor, S. Horwitz, T. Masszi, A. Van-hoof, P. Brown et al., Belinostat in Patients With Relapsed or Refractory Peripheral T-Cell Lymphoma: Results of the Pivotal Phase II BELIEF (CLN-19) Study, J. Clin. Oncol, vol.33, pp.2492-2499, 2015.

F. Foss, R. Advani, M. Duvic, K. B. Hymes, T. Intragumtornchai et al., A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma, Br. J. Haematol, vol.168, pp.811-819, 2015.

S. S. Ramalingam, C. P. Belani, C. Ruel, P. Frankel, B. Gitlitz et al., Phase II study of belinostat (PXD101), a histone deacetylase inhibitor, for second line therapy of advanced malignant pleural mesothelioma, J. Thorac. Oncol, vol.4, pp.97-101, 2009.

J. F. San-miguel, V. T. Hungria, S. S. Yoon, M. Beksac, M. A. Dimopoulos et al., Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: A multicentre, randomised, double-blind phase 3 trial, Lancet Oncol, vol.15, pp.1195-1206, 2014.

A. K. Singh, A. Bishayee, and A. K. Pandey, Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy, Nutrients, vol.10, p.731, 2018.

T. Eckschlager, J. Plch, M. Stiborova, and J. Hrabeta, Histone Deacetylase Inhibitors as Anticancer Drugs, Int. J. Mol. Sci, vol.18, 1414.

M. Mottamal, S. Zheng, T. L. Huang, and G. Wang, Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents, Molecules, vol.20, pp.3898-3941, 2015.

S. Y. Archer, S. Meng, A. Shei, and R. Hodin, A. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells, Proc. Natl. Acad. Sci, vol.95, pp.6791-6796, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01863307

W. S. El-deiry, T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons et al., Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression, Cell, vol.75, pp.817-825, 1993.

A. Saito, T. Yamashita, Y. Mariko, Y. Nosaka, K. Tsuchiya et al., A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors, Proc. Natl. Acad. Sci, vol.96, pp.4592-4597, 1999.

C. Y. Gui, L. Ngo, W. S. Xu, V. M. Richon, and P. A. Marks, Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1, Proc. Natl. Acad. Sci, vol.101, pp.1241-1246, 2004.

Y. Sowa, T. Orita, S. Minamikawa-hiranabe, T. Mizuno, H. Nomura et al., but not Sp1, mediates the transcriptional activation of the p21/WAF1/Cip1 gene promoter by histone deacetylase inhibitor, Cancer Res, vol.59, pp.4266-4270, 1999.

F. Condorelli, I. Gnemmi, A. Vallario, A. A. Genazzani, and P. L. Canonico, Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells, Br. J. Pharmacol, vol.153, pp.657-668, 2008.

Y. Zhao, S. Lu, L. Wu, G. Chai, H. Wang et al.,

, Mol. Cell. Biol, vol.26, pp.2782-2790, 2006.

K. A. Strait, B. Dabbas, E. H. Hammond, C. T. Warnick, S. J. Iistrup et al., Cell cycle blockade and differentiation of ovarian cancer cells by the histone deacetylase inhibitor trichostatin A are associated with changes in p21, Rb, and Id proteins, Mol. Cancer Ther, vol.1, pp.1181-1190, 2002.

V. L. Greenberg, J. M. Williams, J. P. Cogswell, M. Mendenhall, and S. G. Zimmer, Histone deacetylase inhibitors promote apoptosis and differential cell cycle arrest in anaplastic thyroid cancer cells, Thyroid, vol.11, pp.315-325, 2001.

V. A. Florenes, M. Skrede, K. Jorgensen, and J. M. Nesland, Deacetylase inhibition in malignant melanomas: Impact on cell cycle regulation and survival, Melanoma Res, vol.14, pp.173-181, 2004.

T. E. Fandy, S. Shankar, D. D. Ross, E. Sausville, and R. K. Srivastava, Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma, Neoplasia, vol.7, pp.646-657, 2005.

F. Guo, C. Sigua, J. Tao, P. Bali, P. George et al., Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells, Cancer Res, vol.64, pp.2580-2589, 2004.

T. R. Singh, S. Shankar, and R. K. Srivastava, HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma, Oncogene, vol.24, pp.4609-4623, 2005.

S. Shankar, T. R. Singh, T. E. Fandy, T. Luetrakul, D. D. Ross et al., Interactive effects of histone deacetylase inhibitors and TRAIL on apoptosis in human leukemia cells: Involvement of both death receptor and mitochondrial pathways, Int. J. Mol. Med, vol.16, pp.1125-1138, 2005.

G. Iacomino, M. C. Medici, and G. L. Russo, Valproic acid sensitizes K562 erythroleukemia cells to TRAIL/Apo2L-induced apoptosis, Anticancer Res, vol.28, pp.855-864, 2008.

S. Inoue, N. Harper, R. Walewska, M. J. Dyer, and G. M. Cohen, Enhanced Fas-associated death domain recruitment by histone deacetylase inhibitors is critical for the sensitization of chronic lymphocytic leukemia cells to TRAIL-induced apoptosis, Mol. Cancer Ther, vol.8, pp.3088-3097, 2009.

G. M. Matthews, A. Newbold, and R. W. Johnstone, Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity, Adv. Cancer Res, vol.116, pp.165-197, 2012.

M. Lee, Y. Kim, S. H. Kim, H. S. Jin-son, M. Nakajima et al., Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity, Biochem. Biophys. Res. Commun, vol.300, pp.241-246, 2003.

H. Sawa, H. Murakami, Y. Ohshima, M. Murakami, I. Yamazaki et al., Histone deacetylase inhibitors such as sodium butyrate and trichostatin A inhibit vascular endothelial growth factor (VEGF) secretion from human glioblastoma cells, Brain Tumor Pathol, vol.19, pp.77-81, 2002.

Y. Sasakawa, Y. Naoe, T. Noto, T. Inoue, T. Sasakawa et al., Antitumor efficacy of FK228, a novel histone deacetylase inhibitor, depends on the effect on expression of angiogenesis factors, Biochem. Pharmacol, vol.66, pp.897-906, 2003.

D. Zgouras, U. Becker, S. Loitsch, and J. Stein, Modulation of angiogenesis-related protein synthesis by valproic acid, Biochem. Biophys. Res. Commun, vol.316, pp.693-697, 2004.

U. Heider, M. Kaiser, J. Sterz, I. Zavrski, C. Jakob et al., Histone deacetylase inhibitors reduce VEGF production and induce growth suppression and apoptosis in human mantle cell lymphoma, European J. Haematol, vol.76, pp.42-50, 2006.

M. S. Kim, H. J. Kwon, Y. M. Lee, J. H. Baek, J. E. Jang et al., Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes, Nat. Med, vol.7, pp.437-443, 2001.

D. Z. Qian, S. K. Kachhap, S. J. Collis, H. M. Verheul, M. A. Carducci et al., Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha, Cancer Res, vol.66, pp.8814-8821, 2006.

H. T. Cheng and W. C. Hung, Inhibition of proliferation, sprouting, tube formation and Tie2 signaling of lymphatic endothelial cells by the histone deacetylase inhibitor SAHA, Oncol. Rep, vol.30, pp.961-967, 2013.

D. M. Hellebrekers, K. Castermans, E. Vire, R. P. Dings, N. T. Hoebers et al., Epigenetic regulation of tumor endothelial cell anergy: Silencing of intercellular adhesion molecule-1 by histone modifications, Cancer Res, vol.66, pp.10770-10777, 2006.

D. M. Hellebrekers, V. Melotte, E. Vire, E. Langenkamp, G. Molema et al., Identification of epigenetically silenced genes in tumor endothelial cells, Cancer Res, vol.67, pp.4138-4148, 2007.

H. J. Kwon, M. S. Kim, M. J. Kim, H. Nakajima, and K. W. Kim, Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis, Int. J. Cancer, vol.97, pp.290-296, 2002.

R. K. Srivastava, R. Kurzrock, and S. Shankar, MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo, Mol. Cancer Ther, vol.9, pp.3254-3266, 2010.

K. Camphausen, W. Burgan, M. Cerra, K. A. Oswald, J. B. Trepel et al., Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275, Cancer Res, vol.64, pp.316-321, 2004.

K. Camphausen, D. Cerna, T. Scott, M. Sproull, W. E. Burgan et al., Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid, Int. J. Cancer, vol.114, pp.380-386, 2005.

A. Munshi, J. F. Kurland, T. Nishikawa, T. Tanaka, M. L. Hobbs et al., Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity, Clin. Cancer Res, vol.11, pp.4912-4922, 2005.

A. Munshi, T. Tanaka, M. L. Hobbs, S. L. Tucker, V. M. Richon et al., Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci, Mol. Cancer Ther, vol.5, 1967.

M. Perona, L. Thomasz, L. Rossich, C. Rodriguez, M. A. Pisarev et al., Radiosensitivity enhancement of human thyroid carcinoma cells by the inhibitors of histone deacetylase sodium butyrate and valproic acid, Mol. Cell. Endocrinol, vol.478, pp.141-150, 2018.

Y. Zhang, T. Carr, A. Dimtchev, N. Zaer, A. Dritschilo et al., Attenuated DNA damage repair by trichostatin A through BRCA1 suppression, Radiat. Res, vol.168, pp.115-124, 2007.

S. Adimoolam, M. Sirisawad, J. Chen, P. Thiemann, J. M. Ford et al., HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination, Proc. Natl. Acad. Sci, vol.104, pp.19482-19487, 2007.

S. K. Kachhap, N. Rosmus, S. J. Collis, M. S. Kortenhorst, M. D. Wissing et al., Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor, PLoS ONE, vol.5, 2010.

M. Koprinarova, P. Botev, and G. Russev, Histone deacetylase inhibitor sodium butyrate enhances cellular radiosensitivity by inhibiting both DNA nonhomologous end joining and homologous recombination, DNA Repair, vol.10, pp.970-977, 2011.

R. R. Rosato, J. A. Almenara, and S. Grant, The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1, Cancer Res, vol.63, pp.3637-3645, 2003.

A. A. Ruefli, D. Bernhard, K. M. Tainton, R. Kofler, M. J. Smyth et al., Suberoylanilide hydroxamic acid (SAHA) overcomes multidrug resistance and induces cell death in P-glycoprotein-expressing cells, Int. J. Cancer, vol.99, pp.292-298, 2002.

L. M. Butler, X. Zhou, W. S. Xu, H. I. Scher, R. A. Rifkind et al., The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin, Proc. Natl. Acad. Sci, vol.99, pp.11700-11705, 2002.

J. H. Lee, E. G. Jeong, M. C. Choi, S. H. Kim, J. H. Park et al., Inhibition of histone deacetylase 10 induces thioredoxin-interacting protein and causes accumulation of reactive oxygen species in SNU-620 human gastric cancer cells, Mol. Cells, vol.30, pp.107-112, 2010.

J. Ungerstedt, Y. Du, H. Zhang, D. Nair, and A. Holmgren, In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Free Radic, Biol. Med, vol.53, 2002.

G. A. Calin, C. D. Dumitru, M. Shimizu, R. Bichi, S. Zupo et al., Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci, vol.99, pp.15524-15529, 2002.

A. Esquela-kerscher and F. J. Slack, Oncomirs-micrornas with a role in cancer, Nat. Rev. Cancer, vol.6, pp.259-269, 2006.

S. Roush and F. J. Slack, The let-7 family of microRNAs, Trends Cell Biol, vol.18, pp.505-516, 2008.

K. Lin, H. Ye, B. Han, W. Wang, P. Wei et al., Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma, Oncogene, vol.35, pp.3376-3386, 2016.

M. Huang and X. Gong, Let-7c Inhibits the Proliferation, Invasion, and Migration of Glioma Cells via Targeting E2F5, Oncol. Res, vol.26, pp.1103-1111, 2018.

B. Zhao, H. Han, J. Chen, Z. Zhang, S. Li et al., MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3, Cancer Lett, vol.342, pp.43-51, 2014.

K. R. Leite, J. M. Sousa-canavez, S. T. Reis, A. H. Tomiyama, L. H. Camara-lopes et al., Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis, Urol. Oncol. Semin. Orig. Investig, vol.29, pp.265-269, 2011.

S. Komatsu, D. Ichikawa, H. Takeshita, R. Morimura, S. Hirajima et al., Circulating miR-18a: A Sensitive Cancer Screening Biomarker in Human Cancer, vol.28, pp.293-297, 2014.

Z. Sun, K. Shi, S. Yang, J. Liu, Q. Zhou et al., Effect of exosomal miRNA on cancer biology and clinical applications, Mol Cancer, vol.17, p.147, 2018.

H. Tang, M. Ma, J. Dai, C. Cui, L. Si et al., miR-let-7b and miR-let-7c suppress tumourigenesis of human mucosal melanoma and enhance the sensitivity to chemotherapy, J. Exp. Clin. Cancer Res, vol.38, 2019.

S. M. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis et al., RAS Is Regulated by the let-7 MicroRNA Family, Cell, vol.120, pp.635-647, 2005.

Y. Xie, H. Zhang, X. Guo, Y. Feng, R. He et al., Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites, Cell Death Dis, vol.9, p.249, 2018.

S. Cui, J. Huang, Y. Chen, H. Song, B. Feng et al., Let-7c Governs the Acquisition of Chemo-or Radioresistance and Epithelial-to-Mesenchymal Transition Phenotypes in Docetaxel-Resistant Lung Adenocarcinoma, Mol. Cancer Res, vol.11, pp.699-713, 2013.

W. Zhang, Q. Zeng, Z. Ban, J. Cao, T. Chu et al., Effects of let-7c on the proliferation of ovarian carcinoma cells by targeted regulation of CDC25a gene expression, Oncol. Lett, vol.16, pp.5543-5550, 2018.

X. Zhu, L. Wu, J. Yao, H. Jiang, Q. Wang et al., MicroRNA let-7c Inhibits Cell Proliferation and Induces Cell Cycle Arrest by Targeting CDC25A in Human Hepatocellular Carcinoma, PLoS ONE, vol.10, 2015.

H. Han, J. Gu, H. Zuo, Z. Chen, W. Zhao et al., Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer, J. Pathol, vol.226, pp.544-555, 2012.

D. Mortazavi and M. Sharifi, Antiproliferative effect of upregulation of hsa-let-7c-5p in human acute erythroleukemia cells, Cytotechnology, vol.70, pp.1509-1518, 2018.

X. Fu, X. Fu, X. Mao, X. Mao, Y. Wang et al., Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cancer, Oncol. Rep, vol.38, pp.1851-1856, 2017.

S. Diederichs and D. A. Haber, Sequence Variations of MicroRNAs in Human Cancer: Alterations in Predicted Secondary Structure Do Not Affect Processing, Cancer Res, vol.66, pp.6097-6104, 2006.

G. K. Scott, M. D. Mattie, C. E. Berger, S. C. Benz, and C. C. Benz, Rapid alteration of microRNA levels by histone deacetylase inhibition, Cancer Res, vol.66, pp.1277-1281, 2006.

S. Shin, E. Lee, H. J. Cha, S. Bae, J. H. Jung et al., MicroRNAs that respond to histone deacetylase inhibitor SAHA and p53 in HCT116 human colon carcinoma cells, Int. J. Oncol, vol.35, pp.1343-1352, 2009.

P. Di-fazio, R. Montalbano, D. Neureiter, B. Alinger, A. Schmidt et al., Downregulation of HMGA2 by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines, Exp. Cell Res, vol.318, pp.1832-1843, 2012.

C. Balch, K. Naegeli, S. Nam, B. Ballard, A. Hyslop et al., A unique histone deacetylase inhibitor alters microRNA expression and signal transduction in chemoresistant ovarian cancer cells, Cancer Biol. Ther, vol.13, pp.681-693, 2012.

R. Pili, G. Liu, S. Chintala, H. Verheul, S. Rehman et al., Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: A multicentre, single-arm phase I/II clinical trial, Br. J. Cancer, vol.116, pp.874-883, 2017.

E. M. Lee, S. Shin, H. J. Cha, Y. Yoon, S. Bae et al., Suberoylanilide hydroxamic acid (SAHA) changes microRNA expression profiles in A549 human non-small cell lung cancer cells, Int. J. Mol. Med, vol.24, pp.45-50, 2009.

E. Borbone, M. De-rosa, D. Siciliano, L. Altucci, C. M. Croce et al., Up-regulation of miR-146b and down-regulation of miR-200b contribute to the cytotoxic effect of histone deacetylase inhibitors on ras-transformed thyroid cells, J. Clin. Endocrinol. Metab, vol.98, 2013.

B. Humphries and C. Yang, The microRNA-200 family: Small molecules with novel roles in cancer development, progression and therapy, Oncotarget, vol.6, pp.6472-6498, 2015.

G. Eades, M. Yang, Y. Yao, Y. Zhang, and Q. Zhou, miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells, J. Biol. Chem, vol.286, pp.40725-40733, 2011.

X. Bian, Z. Liang, A. Feng, E. Salgado, and H. Shim, HDAC inhibitor suppresses proliferation and invasion of breast cancer cells through regulation of miR-200c targeting CRKL, Biochem. Pharmacol, vol.147, pp.30-37, 2018.

J. Cho, M. Dimri, and G. P. Dimri, MicroRNA-31 Is a Transcriptional Target of Histone Deacetylase Inhibitors and a Regulator of Cellular Senescence, J. Biol. Chem, vol.290, pp.10555-10567, 2015.

D. Nalls, S. Tang, M. Rodova, R. K. Srivastava, and S. Shankar, Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells, PLoS ONE, vol.6, 2011.

D. Sampath, C. Liu, K. Vasan, M. Sulda, V. K. Puduvalli et al., Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia, Blood, vol.119, pp.1162-1172, 2012.

S. Hibino, Y. Saito, T. Muramatsu, A. Otani, Y. Kasai et al., Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells

L. Kretzner, A. Scuto, P. M. Dino, C. M. Kowolik, J. Wu et al., Combining histone deacetylase inhibitor vorinostat with aurora kinase inhibitors enhances lymphoma cell killing with repression of c-Myc, hTERT, and microRNA levels, Cancer Res, vol.71, pp.3912-3920, 2011.

I. Lepore, C. Dell'aversana, M. Pilyugin, M. Conte, A. Nebbioso et al., HDAC inhibitors repress BARD1 isoform expression in acute myeloid leukemia cells via activation of miR-19a and/or b, PLoS ONE, vol.8, 2013.

D. R. Talbert, R. L. Wappel, D. M. Moran, S. A. Shell, and S. S. Bacus, The Role of Myc and the miR-17~92 Cluster in Histone Deacetylase Inhibitor Induced Apoptosis of Solid Tumors, J. Cancer Ther, vol.4, pp.907-918, 2013.

H. Yang, P. Lan, Z. Hou, Y. Guan, J. Zhang et al., Histone deacetylase inhibitor SAHA epigenetically regulates miR-17-92 cluster and MCM7 to upregulate MICA expression in hepatoma, Br. J. Cancer, vol.112, pp.112-121, 2015.

K. J. Humphreys, L. Cobiac, R. K. Le-leu, M. B. Van-der-hoek, and M. Z. Michael, Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster, Mol. Carcinog, vol.52, pp.459-474, 2013.

M. Schiffgen, D. H. Schmidt, A. .;-von-rücker, S. C. Müller, and J. Ellinger, Epigenetic regulation of microRNA expression in renal cell carcinoma, Biochem. Biophys. Res. Commun, vol.436, pp.79-84, 2013.

O. A. Bamodu, K. Kuo, L. Yuan, W. Cheng, W. Lee et al., HDAC inhibitor suppresses proliferation and tumorigenicity of drug-resistant chronic myeloid leukemia stem cells through regulation of hsa-miR-196a targeting BCR/ABL1, Exp. Cell Res, vol.370, pp.519-530, 2018.

T. Lai, B. Ewald, A. Zecevic, C. Liu, M. Sulda et al., HDAC Inhibition Induces MicroRNA-182, which Targets RAD51 and Impairs HR Repair to Sensitize Cells to Sapacitabine in Acute Myelogenous Leukemia, Clin. Cancer Res, vol.22, pp.3537-3549, 2016.

H. S. Seol, Y. Akiyama, S. Shimada, H. J. Lee, T. I. Kim et al., Epigenetic silencing of microRNA-373 to epithelial-mesenchymal transition in non-small cell lung cancer through IRAK2 and LAMP1 axes, Cancer Lett, vol.353, pp.232-241, 2014.

A. Suraweera, K. J. O'byrne, and D. J. Richard, Combination Therapy with Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi, Front. Oncol, vol.8, p.92, 2018.

C. Chen, C. Chen, J. Chen, L. Zhou, H. Xu et al., Histone deacetylases inhibitor trichostatin A increases the expression of Dleu2/miR-15a/16-1 via HDAC3 in non-small cell lung cancer, Mol. Cell. Biochem, vol.383, pp.137-148, 2013.

C. M. Adams, S. W. Hiebert, and C. M. Eischen, Myc Induces miRNA-Mediated Apoptosis in Response to HDAC Inhibition in Hematologic Malignancies, Cancer Res, vol.76, pp.736-748, 2016.

S. Hu, T. S. Dong, S. R. Dalal, F. Wu, M. Bissonnette et al., The Microbe-Derived Short Chain Fatty Acid Butyrate Targets miRNA-Dependent p21 Gene Expression in Human Colon Cancer, PLoS ONE, vol.6, 2011.

T. Murray-stewart, C. L. Hanigan, P. M. Woster, L. J. Marton, and R. A. Casero, Histone Deacetylase Inhibition Overcomes Drug Resistance through a miRNA-Dependent Mechanism, Mol. Cancer Ther, vol.12, pp.2088-2099, 2013.

Y. Chen, W. Wang, W. Wu, C. Hsu, L. Wei et al., Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways, PLoS ONE, vol.12, 2017.

Q. Zhang, M. Sun, S. Zhou, and B. Guo, Class I HDAC inhibitor mocetinostat induces apoptosis by activation of miR-31 expression and suppression of E2F6, Cell Death Discov, 2016.

S. Sato, K. Katsushima, K. Shinjo, A. Hatanaka, F. Ohka et al., Histone Deacetylase Inhibition in Prostate Cancer Triggers miR-320-Mediated Suppression of the Androgen Receptor, Cancer Res, vol.76, pp.4192-4204, 2016.

B. Collins-burow, The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells, Oncol. Rep, vol.27, pp.10-16, 2011.

T. Hsieh, C. Hsu, C. Tsai, C. Long, C. Wu et al., HDAC Inhibitors Target HDAC5, Upregulate MicroRNA-125a-5p, and Induce Apoptosis, vol.23, pp.656-666, 2015.

D. E. Jung, S. B. Park, K. Kim, C. Kim, and S. Y. Song, CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway, Sci. Rep, 2017.

E. Bandres, X. Agirre, N. Bitarte, N. Ramirez, R. Zarate et al., Epigenetic regulation of microRNA expression in colorectal cancer, Int. J. Cancer, vol.125, pp.2737-2743, 2009.

J. Ribas, X. Ni, M. Castanares, M. M. Liu, D. Esopi et al., A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts, Nucl. Acids Res, vol.40, pp.6821-6833, 2012.

Y. Tsukamoto, C. Nakada, T. Noguchi, M. Tanigawa, L. T. Nguyen et al., MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta, Cancer Res, vol.70, pp.2339-2349, 2010.

R. Buurman, E. Gürlevik, V. Schäffer, M. Eilers, M. Sandbothe et al., Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells, Gastroenterology, vol.143, pp.811-820, 2012.

H. Xie, Q. Zhang, H. Zhou, J. Zhou, J. Zhang et al., microRNA-889 is downregulated by histone deacetylase inhibitors and confers resistance to natural killer cytotoxicity in hepatocellular carcinoma cells, Cytotechnology, vol.70, pp.513-521, 2018.

A. Trécul, F. Morceau, A. Gaigneaux, M. Schnekenburger, M. Dicato et al., Valproic acid regulates erythro-megakaryocytic differentiation through the modulation of transcription factors and microRNA regulatory micro-networks, Biochem. Pharmacol, vol.92, pp.299-311, 2014.

J. Mazar, D. Deblasio, S. S. Govindarajan, S. Zhang, and R. J. Perera, Epigenetic regulation of microRNA-375 and its role in melanoma development in humans, FEBS Lett, vol.585, pp.2467-2476, 2011.

A. Canella, H. C. Nieves, D. W. Sborov, L. Cascione, H. S. Radomska et al., HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide, Oncotarget, vol.6, pp.31134-31150, 2015.

H. M. Jung, Y. Benarroch, and E. K. Chan, Anti-Cancer Drugs Reactivate Tumor Suppressor miR-375 Expression in Tongue Cancer Cells: miR-375 REACTIVATION BY ANTI-CANCER DRUGS, J. Cell. Biochem, vol.116, pp.836-843, 2015.

Y. Saito, G. Liang, G. Egger, J. M. Friedman, J. C. Chuang et al., Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells, Cancer Cell, vol.9, pp.435-443, 2006.

K. V. Good, A. Martínez-de-paz, M. Tyagi, M. S. Cheema, A. A. Thambirajah et al., Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity, Epigenetics, vol.12, pp.934-944, 2017.

S. Meidhof, S. Brabletz, W. Lehmann, B. Preca, K. Mock et al., ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat, EMBO Mol. Med, vol.7, pp.831-847, 2015.

J. Xiao, H. Lin, X. Luo, X. Luo, and Z. Wang, miR-605 joins p53 network to form a p53: miR-605: Mdm2 positive feedback loop in response to stress, EMBO J, vol.30, pp.524-532, 2011.

Y. Zhou, H. Yang, W. Xia, L. Cui, R. Xu et al., Down-regulation of miR-605 promotes the proliferation and invasion of prostate cancer cells by up-regulating EN2, Life Sci, vol.190, pp.7-14, 2017.

H. Danesh, M. Hashemi, F. Bizhani, S. M. Hashemi, and G. Bahari, Association study of miR-100, miR-124-1, miR-218-2, miR-301b, miR-605, and miR-4293 polymorphisms and the risk of breast cancer in a sample of Iranian population, Gene, vol.647, pp.73-78, 2018.

H. Najminejad, S. M. Kalantar, M. Abdollahpour-alitappeh, M. H. Karimi, A. M. Seifalian et al., Emerging roles of exosomal miRNAs in breast cancer drug resistance, IUBMB Life, 2019.

B. Pardini, A. A. Sabo, G. Birolo, and G. A. Calin, Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies, 2019.

M. Colombo, G. Raposo, and C. Thery, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles, Annu. Rev. Cell Dev. Biol, vol.30, pp.255-289, 2014.

T. D. Schmittgen, Exosomal miRNA Cargo as Mediator of Immune Escape Mechanisms in Neuroblastoma, Cancer Res, vol.79, pp.1293-1294, 2019.

N. Kapetanakis, V. Baloche, and P. Busson, Tumor exosomal microRNAs thwarting anti-tumor immune responses in nasopharyngeal carcinomas, Ann. Trans. Med, vol.5, 2017.

B. Kulkarni, P. Kirave, P. Gondaliya, K. Jash, A. Jain et al., Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer, Drug Discov. Today, 2019.

D. Bach, J. Hong, H. J. Park, and S. K. Lee, The role of exosomes and miRNAs in drug-resistance of cancer cells, Int. J. Cancer, vol.141, pp.220-230, 2017.