M. A. Hernan, B. Brumback, and J. M. Robins, A structural approach to selection bias, Epidemiology, vol.15, pp.615-640, 2004.

J. M. Robins, A new approach to causal inference in mortality studies, Mathematical Modelling, vol.7, pp.1393-512, 1986.

J. M. Robins, Association, causation, and marginal structural models, Synthese, vol.121, issue.1, pp.151-79, 1999.

J. M. Robins and M. A. Hernan, Estimation of the causal effects of time-varying exposures. Longitudinal Data analysis, pp.553-99, 2008.

J. M. Robins, M. A. Hernan, and B. Brumback, Marginal structural models and causal inference in epidemiology, Epidemiology, vol.11, issue.5, pp.550-60, 2000.

M. A. Hernan, B. Brumback, and J. M. Robins, Marginal structural models to estimate the joint causal effect of nonrandomized treatments, J Am Stat Asso, vol.96, pp.440-448, 2001.

A. R. Ellis and M. A. Brookhart, Approaches to inverse-probability-of-treatmentweighted estimation with concurrent treatments, J Clin Epidemiol, vol.66, issue.8, pp.51-57, 2013.

I. B. Tager, Effects of physical activity and body composition on functional limitation in the elderly: application of the marginal structural model, Epidemiology, vol.15, issue.4, pp.479-93, 2004.

C. J. Howe, Estimating the effects of multiple time-varying exposures using joint marginal structural models: alcohol consumption, injection drug use, and HIV acquisition, Epidemiology, vol.23, issue.4, pp.574-82, 2012.

H. Lopez-gatell, Effect of tuberculosis on the survival of women infected with human immunodeficiency virus, Am J Epidemiol, vol.165, issue.10, pp.1134-1176, 2007.

S. R. Cole, Effect of highly active antiretroviral therapy on time to acquired immunodeficiency syndrome or death using marginal structural models, Am J Epidemiol, vol.158, issue.7, pp.687-94, 2003.

L. M. Bodnar, Marginal structural models for analyzing causal effects of time-dependent treatments: an application in perinatal epidemiology, Am J Epidemiol, vol.159, issue.10, pp.926-960, 2004.

W. G. Havercroft and V. Didelez, Simulating from marginal structural models with time-dependent confounding, Stat Med, vol.31, issue.30, pp.4190-206, 2012.

M. E. Karim, On the application of statistical learning approaches to construct inverse probability weights in marginal structural cox models: hedging against weight-model misspecification, Commun Stat Simul Comput, vol.2016, pp.1-30

G. Vourli and G. Touloumi, Performance of the marginal structural models under various scenarios of incomplete marker's values: a simulation study, Biom J, vol.57, issue.2, pp.254-70, 2015.

D. Westreich, A simulation study of finite-sample properties of marginal structural cox proportional hazards models, Stat Med, vol.31, pp.2098-109, 2012.

Y. Xiao, M. Abrahamowicz, and E. E. Moodie, Accuracy of conventional and marginal structural cox model estimators: a simulation study, Int J Biostat, vol.6, issue.2, p.13, 2010.

Y. Xiao, Flexible marginal structural models for estimating the cumulative effect of a time-dependent treatment on the hazard: reassessing the cardiovascular risks of Didanosine treatment in the Swiss HIV cohort study, J Am Stat Asso, vol.109, issue.506, pp.455-64, 2014.

J. G. Young, Relation between three classes of structural models for the effect of a time-varying exposure on survival, Lifetime Data Anal, vol.16, issue.1, pp.71-84, 2010.

J. G. Young, T. Tchetgen, and E. J. , Simulation from a known cox MSM using standard parametric models for the g-formula, Stat Med, vol.33, issue.6, pp.1001-1015, 2014.

J. Young, S. Picciotto, and J. M. Robins, Simulation from structural survival models under complex time-varying data structures, J Am stat asso, 2008.

R. A. Ali, M. A. Ali, and Z. Wei, On computing standard errors for marginal structural cox models, Lifetime Data Anal, vol.20, issue.1, pp.106-137, 2014.

M. Bruyand, Cancer risk and use of protease inhibitor or nonnucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy: the D: a: D study, J Acquir Immune Defic Syndr, vol.68, issue.5, pp.568-77, 2015.

M. Guiguet, Effect of immunodeficiency, HIV viral load, and antiretroviral therapy on the risk of individual malignancies (FHDH-ANRS CO4): a prospective cohort study, Lancet Oncol, vol.10, issue.12, pp.1152-1161, 2009.

M. Mary-krause, Cohort profile: French hospital database on HIV (FHDH-ANRS CO4), Int J Epidemiol, vol.43, issue.5, pp.1425-1461, 2014.

C. Piketty, Incidence of HIV-related anal cancer remains increased despite long-term combined antiretroviral treatment: results from the french hospital database on HIV, J Clin Oncol, vol.30, issue.35, pp.4360-4366, 2012.

S. R. Cole and M. A. Hernan, Constructing inverse probability weights for marginal structural models, Am J Epidemiol, vol.168, issue.6, pp.656-64, 2008.

T. J. Vanderweele, On the distinction between interaction and effect modification, Epidemiology, vol.20, issue.6, pp.863-71, 2009.

C. Csajka and D. Verotta, Pharmacokinetic-pharmacodynamic modelling: history and perspectives, J Pharmacokinet Pharmacodyn, vol.33, issue.3, pp.227-79, 2006.

M. E. Karim and R. W. Platt, Estimating inverse probability weights using super learner when weight-model specification is unknown in a marginal structural cox model context, Stat Med, vol.36, issue.13, pp.2032-2079, 2017.

H. Bang and J. M. Robins, Doubly robust estimation in missing data and causal inference models, Biometrics, vol.61, issue.4, pp.962-73, 2005.

J. M. Robins, A. Rotnitzky, and L. P. Zhao, Estimation of regression coefficients when some Regressors are not always observed, J Am Stat Assoc, vol.89, issue.427, pp.846-66, 1994.

M. Van-der-laan, Targeted maximum likelihood based causal inference: part 1, Int J Biostat, vol.6, issue.2, p.2, 2010.

M. Van-der-laan, Targeted maximum likelihood based causal inference: part 2, Int J Biostat, vol.6, issue.2, p.3, 2010.

R. M. Daniel, Methods for dealing with time-dependent confounding, Stat Med, vol.32, issue.9, pp.1584-618, 2013.

D. F. Mccaffrey, A tutorial on propensity score estimation for multiple treatments using generalized boosted models, Stat Med, vol.32, pp.3388-414, 2013.

P. C. Austin, The performance of different propensity score methods for estimating marginal hazard ratios, Stat Med, vol.32, issue.16, pp.2837-2886, 2013.

M. E. Karim, Comparison of statistical approaches dealing with timedependent confounding in drug effectiveness studies, Stat Methods Med Res, 2016.

M. Pang, J. S. Kaufman, and R. W. Platt, Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models, Stat Methods Med Res, vol.25, issue.5, pp.1925-1962, 2016.

C. Chao, Exposure to antiretroviral therapy and risk of cancer in HIVinfected persons, AIDS, vol.26, issue.17, pp.2223-2254, 2012.