J. A. Rassen, S. Schneeweiss, R. J. Glynn, M. A. Mittleman, and M. A. Brookhart, Instrumental variable analysis for estimation of treatment effects with dichotomous outcomes, Am J Epidemiol, vol.169, issue.3, pp.273-84, 2009.

G. Gowrisankaran and R. J. Town, Estimating the quality of care in hospitals using instrumental variables, J Health Econ, vol.18, issue.6, pp.22-25, 1999.

R. J. Carroll, D. Ruppert, and L. A. Stefanski, Measurement Error in Nonlinear Models. Monographs on Statistics and Applied Probability, 1995.

S. Nestler, Using instrumental variables to estimate the parameters in unconditional and conditional second-order latent growth models, Struct Equ Model A Multidiscip J, vol.22, issue.3, pp.461-73, 2015.

W. H. Greene, Boston: Pearson; 2012, Econometric Analysis, pp.259-89, 2008.

J. Bound, D. A. Jaeger, and R. M. Baker, Problems with instrumental variables estimation when the correlation between the instruments and the endogeneous explanatory variable is weak, J Am Stat Assoc, vol.90, issue.430, pp.443-50, 1995.

J. V. Terza, W. D. Bradford, and C. E. Dismuke, The use of linear instrumental variables methods in health services research and health economics: A cautionary note, Health Serv Res, vol.43, issue.3, pp.1102-1120, 2008.

E. M. Foster, Instrumental Variables for Logistic Regression: An Illustration, Soc Sci Res, vol.26, issue.4, pp.487-504, 1997.

J. V. Terza, Estimation of policy effects using parametric nonlinear models: a contextual critique of the generalized method of moments, Health Serv Outcome Res Methodol, vol.6, issue.3, pp.177-98, 2006.

B. Cai, D. S. Small, and T. Have, Two-stage instrumental variable methods for estimating the causal odds ratio: Analysis of bias, Stat Med, vol.30, issue.15, pp.1809-1824, 2011.

O. H. Klungel, E. P. Martens, B. M. Psaty, D. E. Grobbee, S. D. Sullivan et al., Methods to assess intended effects of drug treatment in observational studies are reviewed, J Clin Epidemiol, vol.57, pp.1223-1231, 2004.

T. M. Palmer, J. Sterne, R. M. Harbord, D. A. Lawlor, N. A. Sheehan et al., Instrumental variable estimation of causal risk ratios and causal odds ratios in mendelian randomization analyses, Am J Epidemiol, vol.173, issue.12, p.1392, 2011.

C. G. Chapman and J. M. Brooks, Treatment effect estimation using nonlinear two-stage instrumental variable estimators: Another cautionary note, Health Serv Res, vol.51, issue.6, pp.2375-394, 2016.

K. M. Johnston, P. Gustafson, A. R. Levy, and P. Grootendorst, Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research

, Stat Med, vol.27, issue.9, pp.1539-1556, 2008.

S. Greenland, An introduction to instrumental variables for epidemiologists, Int J Epidemiol, vol.29, issue.4, pp.722-731, 2000.

M. Mcclellan, B. J. Mcneil, and J. P. Newhouse, Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality?: Analysis using instrumental variables, JAMA, vol.272, issue.11, pp.859-66, 1994.

L. E. Cain, S. R. Cole, S. Greenland, T. T. Brown, J. S. Chmiel et al., Effect of highly active antiretroviral therapy on incident aids using calendar period as an instrumental variable, Am J Epidemiol, vol.169, issue.9, pp.1124-1132, 2009.

M. A. Brookhart and S. Schneeweiss, Preference-based instrumental variable methods for the estimation of treatment effects: assessing validity and interpreting results, Int J Biostat, vol.3, issue.1, p.14, 2007.

J. M. Brooks, E. A. Chrischilles, S. D. Scott, and C. Ss, Was breast conserving surgery underutilized for early stage breast cancer? instrumental variables evidence for stage ii patients from iowa, Health Serv Res, vol.38, issue.6p1, pp.1385-1402, 2003.

S. C. Johnston, Combining ecological and individual variables to reduce confounding by indication:: Case study-subarachnoid hemorrhage treatment, J Clin Epidemiol, vol.53, issue.12, pp.251-252, 2000.

M. A. Brookhart, P. S. Wang, D. H. Solomon, and S. Schneeweiss, Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable, Epidemiology, vol.17, issue.3, pp.268-75, 2006.

M. Abrahamowicz, M. E. Beauchamp, R. Ionescu-ittu, J. Delaney, and L. Pilote, Reducing the variance of the prescribing preference-based instrumental variable estimates of the treatment effect, Am J Epidemiol, vol.174, issue.4, pp.494-502, 2011.

M. Baiocchi, J. Cheng, and D. S. Small, Instrumental variable methods for causal inference, Stat Med, vol.33, issue.13, pp.2297-340, 2014.

M. J. Uddin, R. Groenwold, A. De-boer, H. Gardarsdottir, E. Martin et al., Instrumental variables analysis using multiple databases: an example of antidepressant use and risk of hip fracture, Pharmacoepidemiol Drug Saf, vol.25, pp.122-153, 2016.

M. J. Uddin, R. Groenwold, A. De-boer, A. Afonso, P. Primatesta et al., Evaluating different physician's prescribing preference based instrumental variables in two primary care databases: a study of inhaled long-acting beta2-agonist use and the risk of myocardial infarction, Pharmacoepidemiol Drug Saf, vol.25, pp.132-173, 2016.

M. A. Brookhart, J. A. Rassen, and S. Schneeweiss, Instrumental variable methods in comparative safety and effectiveness research, Pharmacoepidemiol Drug Saf, vol.19, issue.6, pp.537-54, 2010.

J. V. Terza, A. Basu, and P. J. Rathouz, Two-Stage Residual Inclusion Estimation: Addressing Endogeneity in Health Econometric Modeling, J Health Econ, vol.27, issue.3, pp.531-574, 2008.

A. C. Cameron and P. K. Trivedi, Microeconometrics: Methods and Applications, pp.166-220, 2005.

L. P. Hansen, J. Heaton, and A. Yaron, Finite-sample properties of some alternative gmm estimators, J Bus Econ Stat, vol.14, issue.3, pp.262-80, 1996.

T. Amemiya, The nonlinear two-stage least-squares estimator, J Econ, vol.2, issue.2, pp.90033-90038, 1974.

L. P. Hansen, Large sample properties of generalized method of moments estimators, Econometrica, vol.50, issue.4, pp.1029-1054, 1982.

P. Chausse, Computing generalized method of moments and generalized empirical likelihood with r, J Stat Softw, vol.34, issue.1, pp.1-35, 2010.

J. H. Stock, J. H. Wright, and M. Yogo, A survey of weak instruments and weak identification in generalized method of moments, J Bus Econ Stat, vol.20, issue.4, pp.518-547, 2002.