R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data, 2002.

S. Van-buuren, Flexible Imputation of Missing Data, 2012.

H. Thijs, G. Molenberghs, B. Michiels, G. Verbeke, and D. Curran, Strategies to fit pattern-mixture models, Biostatistics, vol.3, issue.2, pp.245-65, 2002.

G. M. Fitzmaurice, M. G. Kenward, G. Molenberghs, G. Verbeke, and A. A. Tsiatis, Missing data: Introduction and statistical preliminaries, Handbook of Missing Data Methodology, pp.3-22, 2014.

R. J. Little, Pattern-mixture models for multivariate incomplete data, J Am Stat Assoc, vol.88, issue.421, pp.125-159, 1993.

D. B. Rubin, Formalizing subjective notions about the effect of nonrespondents in sample surveys, J Am Stat Assoc, vol.72, issue.359, pp.538-581, 1977.

R. J. Glynn, N. M. Laird, and D. B. Rubin, Selection modeling versus mixture modeling with nonignorable nonresponse, Drawing Inferences from Self-selected Samples, pp.115-157, 1986.

S. Van-buuren, H. C. Boshuizen, and D. L. Knook, Multiple imputation of missing blood pressure covariates in survival analysis, Stat Med, vol.18, issue.6, pp.681-94, 1999.

B. Ratitch, M. O'kelly, and R. Tosiello, Missing data in clinical trials: From clinical assumptions to statistical analysis using pattern mixture models, Pharm Stat, vol.12, issue.6, pp.337-384, 2013.

W. H. Greene, Econometric Analysis: International Edition (7th Ed.) Edinburgh: Pearson, 2011.

T. Amemiya, Tobit models: A survey, J Econom, vol.24, issue.1, pp.3-61, 1984.

J. J. Heckman, The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models, Ann Econ Soc Meas, vol.5, issue.4, pp.475-92, 1976.

J. J. Heckman, Sample selection bias as a specification error, Econometrica, vol.47, issue.1, pp.153-61, 1979.

O. Toomet and A. Henningsen, Sample selection models in R: Package sampleSelection, J Stat Softw, vol.27, issue.7, pp.1-23, 2008.

W. Van-de-ven and B. Van-praag, The demand for deductibles in private health insurance: A probit model with sample selection, J Econom, vol.17, issue.2, pp.229-52, 1981.

W. Greene, A stochastic frontier model with correction for sample selection, J Prod Anal, vol.34, issue.1, pp.15-24, 2010.

I. R. White, P. Royston, and A. M. Wood, Multiple imputation using chained equations: Issues and guidance for practice, Stat Med, vol.30, issue.4, pp.377-99, 2011.

J. Galimard, S. Chevret, C. Protopopescu, and M. Resche-rigon, A multiple imputation approach for MNAR mechanisms compatible with Heckman's model, Stat Med, vol.35, issue.17, pp.2907-2927, 2016.

G. Marra and R. Radice, A penalized likelihood estimation approach to semiparametric sample selection binary response modeling, Electron J Stat, vol.7, pp.1432-55, 2013.

X. Duval, S. Van-der-werf, T. Blanchon, A. Mosnier, M. Bouscambert-duchamp et al., Efficacy of oseltamivir-zanamivir combination compared to each monotherapy for seasonal influenza: A randomized placebo-controlled trial, PLoS Med, vol.7, issue.11, p.1000362, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00701161

J. J. Treanor, F. G. Hayden, P. S. Vrooman, R. Barbarash, R. Bettis et al., Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: a randomized controlled trial, JAMA, vol.283, issue.8, pp.1016-1040, 2000.

F. Vella, Estimating models with sample selection bias: A survey, J Hum Resour, vol.33, issue.1, pp.127-69, 1998.

P. Puhani, The Heckman correction for sample selection and its critique, J Econ Surveys, vol.14, issue.1, pp.53-68, 2000.

G. Marra, R. Radice, T. Bärnighausen, S. N. Wood, and M. E. Mcgovern, A simultaneous equation approach to estimating hiv prevalence with nonignorable missing responses, J Am Stat Assoc, vol.112, issue.518, pp.484-96, 2017.

H. Y. Chen, Compatibility of conditionally specified models, Stat Probab Lett, vol.80, issue.7, pp.670-677, 2010.

R. A. Hughes, I. R. White, S. R. Seaman, J. R. Carpenter, K. Tilling et al., Joint modelling rationale for chained equations, BMC Med Res Methodol, vol.14, issue.1, p.28, 2014.

S. Van-buuren, Multiple imputation of discrete and continuous data by fully conditional specification, Stat Meth Med Res, vol.16, issue.3, pp.219-261, 2007.

S. Van-buuren, J. P. Brand, C. Groothuis-oudshoorn, and R. Db, Fully conditional specification in multivariate imputation, J Stat Comput Simul, vol.76, issue.12, pp.1049-64, 2006.

D. B. Rubin, Multiple Imputation for Nonresponse in Surveys, 1987.

. R-core-team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing; 2016. R Foundation for Statistical Computing

S. Van-buuren, K. Groothuis-oudshoorn, and . Mice, Multivariate imputation by chained equations in R, J Stat Softw, vol.45, issue.3, pp.1-67, 2011.

G. Marra and R. Radice, Estimation of a regression spline sample selection model, Comput Stat Data Anal, vol.61, pp.158-73, 2013.

B. Kaambwa, S. Bryan, and L. Billingham, Do the methods used to analyse missing data really matter? An examination of data from an observational study of intermediate care patients, BMC Res Notes, vol.5, issue.1, p.330, 2012.

S. Bushway, B. D. Johnson, and L. A. Slocum, Is the magic still there? the use of the Heckman two-step correction for selection bias in criminology, J Quant Criminol, vol.23, issue.2, pp.151-78, 2007.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Introducing markov chain monte carlo. In: Markov Chain Monte Carlo in Practice, pp.75-88, 1996.

X. Meng, Multiple-imputation inferences with uncongenial sources of input, Stat Sci, vol.9, pp.538-58, 1994.

J. Liu, A. Gelman, J. Hill, Y. Su, and J. Kropko, On the stationary distribution of iterative imputations, Biometrika, vol.101, issue.1, pp.155-73, 2014.

Y. V. Marchenko and M. G. Genton, A heckman selection-t model, J Am Stat Assoc, vol.107, issue.497, pp.304-321, 2012.

E. O. Ogundimu and G. S. Collins, A robust imputation method for missing responses and covariates in sample selection models, Stat Meth Med Res, issue.0, p.0, 2017.

L. Kai, Bayesian inference in a simultaneous equation model with limited dependent variables, J Econom, vol.85, issue.2, pp.387-400, 1998.

M. Van-hasselt, Bayesian inference in a sample selection model, J Econom, vol.165, issue.2, pp.221-253, 2011.