J. W. Hogan, J. Roy, and C. Korkontzelou, Major lipids, apolipoproteins, and risk of vascular disease, JAMA, vol.302, issue.18, pp.1993-2000, 2009.

D. B. Rubin, Multiple imputation for nonresponse in surveys, 1987.

J. Carpenter and M. G. Kenward, Multiple imputation and its application: statistics in practice, 2013.

J. Nevalainen, M. G. Kenward, and S. M. Virtanen, Missing values in longitudinal dietary data: a multiple imputation approach based on a fully conditional specification, StatMed, vol.28, issue.29, pp.3657-69, 2009.

C. A. Welch, I. Petersen, and J. Bartlett, Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data, Stat.Med, vol.33, issue.21, pp.3725-3762, 2014.

S. R. Seaman and I. R. White, Review of inverse probability weighting for dealing with missing data, Stat Methods Med Res, vol.22, issue.3, pp.278-95, 2013.

D. Hedeker and R. D. Gibbons, Application of random-effects pattern-mixture models for missing data in longitudinal studies, Psychol Methods, vol.2, issue.1, pp.64-78, 1997.

H. Demirtas and J. L. Schafer, On the performance of random-coefficient patternmixture models for non-ignorable drop-out, Stat Med, vol.22, pp.2553-75, 2003.

D. Curran, G. Molenberghs, and H. Thijs, Sensitivity analysis for pattern mixture models, J Biopharm Stat, vol.14, issue.1, pp.125-168, 2004.

R. J. Little, J. Wang, and X. Sun, The treatment of missing data in a large cardiovascular clinical outcomes study, Clin Trials, vol.13, issue.3, pp.344-51, 2016.

A. Burton, D. G. Altman, and P. Royston, The design of simulation studies in medical statistics, Stat Med, vol.25, issue.24, pp.4279-92, 2006.

M. Marmot and E. Brunner, Cohort profile: the Whitehall II study, Int J Epidemiol, vol.34, pp.251-257, 2005.

S. Sabia, A. Elbaz, and A. Dugravot, Impact of smoking on cognitive decline in early old age, Arch Gen Psychiatry, vol.69, issue.6, pp.627-662, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00677216

R. J. Little and D. B. Rubin, Statistical analysis with missing data, 2002.

S. Van-buuren, J. Brand, and K. Groothuis-oudshoorn, Fully conditional specification in multivariate imputation, J Stat Comput Simul, vol.76, issue.12, pp.1049-64, 2006.

M. G. Kenward and J. Carpenter, Multiple imputation: current perspectives, Stat Methods Med Res, vol.16, issue.3, pp.199-218, 2007.

K. J. Lee and J. B. Carlin, Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation, Am J Epidemiol, vol.171, issue.5, pp.624-656, 2010.

I. R. White, R. Daniel, and P. Royston, Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables, Computat Stat Data Anal, vol.54, issue.10, pp.2267-75, 2010.

J. A. Sterne, I. R. White, and J. B. Carlin, Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls, BMJ, vol.338, p.2393, 2009.

J. C. Raven, In guide to using the Mill Hill vocabulary test with progressive matrices, 1965.

A. W. Heim and A. H. In, 4 group test of general intelligence, 1970.

J. G. Borkowski, A. L. Benton, and O. Spreen, Word fluency and brain damage, Neuropsychologica, vol.5, issue.2, pp.135-175, 1967.

Z. Arvanitakis, F. Grodstein, and J. L. Bienias, Relation of nsaids to incident ad, change in cognitive function, and ad pathology, Neurology, vol.70, issue.23, pp.2219-2244, 2008.

R. S. Wilson, S. E. Leurgans, and P. A. Boyle, Neurodegenerative basis of agerelated cognitive decline, Neurology, vol.75, issue.12, pp.1070-1078, 2010.

L. M. Collins, J. L. Schafer, and C. M. Kam, A comparison of inclusive and restrictive strategies in modern missing data procedures, Psychol Methods, vol.6, issue.4, pp.330-51, 2001.

C. A. Welch, J. Bartlett, and I. Petersen, Application of multiple imputation using the two-fold fully conditional specification algorithm in longitudinal clinical data, Stata J, vol.14, issue.2, pp.418-449, 2014.

I. R. White and J. B. Carlin, Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values, Stat Med, vol.29, issue.28, pp.2920-2951, 2010.

P. T. Von-hippel, Regression with missing ys: an improved strategy for analyzing multiply imputed data, Sociol Methodol, vol.29, pp.83-117, 2007.

T. R. Sullivan, A. B. Salter, and P. Ryan, Bias and precision of the "multiple imputation, then deletion" method for dealing with missing outcome data, Am J Epidemiol, vol.182, issue.6, pp.528-562, 2015.

I. R. White, P. Royston, and A. M. Wood, Multiple imputation using chained equations: issues and guidance for practice, Stat Med, vol.30, issue.4, pp.377-99, 2011.

C. Wang and C. B. Hall, Correction of bias from non-random missing longitudinal data using auxiliary information, Statist Med, vol.29, pp.671-680, 2010.

A. M. Rawlings, Y. Sang, and A. R. Sharrett, Multiple imputation of cognitive performance as a repeatedly measured outcome, Eur J Epidemiol, vol.32, issue.1, pp.55-66, 2017.

M. Lotz, S. Miyahara, and G. Tang, Pattern mixture models incorporating reasons for dropout, Biometrics section: Proceedings of the Survey Research Methods Section, 2008.

G. Mein, S. Johal, and R. L. Grant, Predictors of two forms of attrition in a longitudinal health study involving ageing participants: an analysis based on the Whitehall II study, BMC Med Res Methodol, vol.12, p.164, 2012.

K. Biering, N. H. Hjollund, and M. Frydenberg, Using multiple imputation to deal with missing data and attrition in longitudinal studies with repeated measures of patient-reported outcomes, Clin Epidemiol, vol.7, pp.91-106, 2015.

P. Zaninotto and A. Sacker, Missing data in longitudinal surveys: a comparison of performance of modern techniques, J Modern Appl Stat Methods, vol.16, issue.2, pp.378-402, 2017.

S. Grund, O. Ludtke, and A. Robitzsch, Multiple imputation of missing covariate values in multilevel models with random slopes: a cautionary note, Behav Res Methods, vol.48, pp.640-649, 2016.

H. Demirtas, Multiple imputation under bayesianly smoothed patternmixture models for non-ignorable drop-out, Statist Med, vol.24, pp.2345-63, 2005.

M. Yang, L. Wang, and S. E. Maxwell, Bias in longitudinal data analysis with missing data using typical linear mixed-effects modelling and pattern-mixture approach: an analytical illustration, Br J Math Stat Psychol, vol.68, pp.246-67, 2015.

A. Dugravot, S. Sabia, and M. J. Shipley, Detection of outliers due to participants' non-adherence to protocol in a longitudinal. Study of cognitive decline, PLoS One, vol.10, issue.7, p.132110, 2015.

, Panel on Handling Missing Data in Clinical Trials. Committee on. National Statistics, Social sciences, and education. The prevention and treatment of missing data in clinical trials, 2010.