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ABSTRACT: 

Characterization of healthy versus pathological tissue is a key concern when modeling tissue microstructure 

in the peritumoral area, confounded by the presence of free water (e.g., edema). Most methods that model 

tissue microstructure are either based on advanced acquisition schemes not readily available in the clinic, 

or are not designed to address the challenge of edema. This underscores the need for a robust free water 

elimination (FWE) method that estimates free water in pathological tissue but can be used with clinically 

prevalent single-shell diffusion tensor imaging data. FWE in single-shell data requires the fitting of a bi- 

compartment model, which is an ill-posed problem. Its solution requires optimization, which relies on an 

initialization step. We propose a novel initialization approach for FWE, FERNET, which improves the 

estimation of free water in edematous and infiltrated peritumoral regions, using single-shell diffusion MRI 

data. The method has been extensively investigated on simulated data and healthy and brain tumor datasets, 

demonstrating its applicability on clinically acquired data. Additionally, it has been applied to data from 

brain tumor patients to demonstrate the improvement in tractography in the peritumoral region.   

 

Key words: Diffusion MRI, Diffusion tensor imaging, Free water elimination, Microstructural modeling, 

Brain tumors, Edema, Peritumoral region, Tractography. 
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1. INTRODUCTION  

Diffusion tensor imaging (DTI), one of the basic frameworks of diffusion MRI (dMRI), is frequently 

used in clinical studies, because it characterizes tissue microstructure and provides orientation information 

for delineation of basic fiber tracts using tractography. DTI can be used to enrich radiomic markers of 

pathology and inform about connectivity in the brain, and is essential for neurosurgical and treatment 

planning of brain tumors, among others [1]. Since dMRI relies on the measurement of water displacement 

in tissue, it is confounded by disease processes that cause accumulation of water in the extra-cellular space, 

such as vasogenic or infiltrative edema. This is further complicated by the presence of contaminants like 

cancer cells in infiltrated peritumoral regions and parenchymal pathology after brain trauma, any of which 

can alter the diffusion of water. These processes compromise the specificity of diffusion indices, such as 

fractional anisotropy (FA) and mean diffusivity (MD), for characterization of white matter and/or 

tractography, leading to interpretation errors in clinical studies, including those tailored for surgical and 

treatment planning of brain tumors.  

These issues can be alleviated by accurate noninvasive estimation and compartmentalization of water 

(and other contaminants) in the brain as can be afforded by multi-compartment modeling of the diffusion 

data. Such modeling captures the uncontaminated tissue as a compartment, and the contaminants as one or 

more separate compartments. In healthy tissue, multi-compartment modeling is able to alleviate partial 

volume effects. Multi-compartment modeling allows for more accurate diffusion indices, improved 

tractography, and novel contrasts such as volume fraction that capture underlying pathophysiological 

processes [2]. Although the importance of multi-compartment modeling has been recognized  [3-7], most 

of these investigations use multi-shell diffusion acquisitions, since the additional shells allow for more 

robust and accurate estimation of model parameters. Such acquisitions, however, remain clinically 

infeasible for the time being. 

Single-shell DTI is the predominant type of diffusion MRI acquired in a busy clinical setting. 

Additionally, large cancer databases, such as the Adult Brain Tumor Consortium (ABTC) 

(http://www.abtconsortium.org) have single-shell DTI data only. The ability to interrogate the peritumoral 

manifestation of free water in such large datasets, along with the wealth of clinical data available, including 

pharmacological and surgical treatment responses, quality of life measures, and survival rates, could be 

crucial in assessing neoplastic infiltration and edema, potentially providing new radiomic features for 

tumors. This highlights the need for free water estimation that is accurate in the presence of peritumoral 

edema using clinical acquisitions.  

The fitting of a bi-compartment model to single-shell data is a mathematically ill-posed problem [8] 

with infinitely many solutions. The earliest attempts of fitting a bi-compartment model relied on multiple 

shells [9, 10]. Pasternak et al. [2] extended the model fit to single-shell acquisitions by positing that the 

problem could be addressed by an appropriate initialization of the model parameters and by a spatial 

regularizer that stabilizes the fit. This free water estimation allowed for a better reconstruction of healthy 

fornix tracts and enabled fiber tracking through edema. The application of this model has led to significant 

findings in various applications, including depression [11], Parkinson’s disease [12-14] and schizophrenia 

[15]. The initialization, however, is affected by scanner inhomogeneity [16] and it underestimates the free 

water in healthy tissue while producing physiologically implausible diffusion indices in the peritumoral 

region  [17]. It has also not been extensively validated in simulated and brain tumor data. 

The overarching goal of this paper is to present a paradigm for free water elimination in peritumoral 

tissue to obtain diffusion indices in the presence of edema, subsequently leading to improved tractography, 

using clinically acquired single-shell data. This is achieved by fitting a bi-compartment model, extending 

the work in [2] with a novel interpolated initialization designed to work optimally in edematous and healthy 

regions. The two compartments describe the underlying tissue and edema. This free water estimation 

paradigm will subsequently be referred to as FERNET (Freewater EstimatoR using iNtErpolated 
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iniTialization). FERNET will be tested on simulated DTI data with varying free water fractions, anisotropy 

levels, and underlying diffusivities, and in data of healthy participants and tumor patients.  

 

2.        METHODS 

2.1. Overview 

We describe a novel initialization approach, aiming to improve free-water estimation from clinically 

acquired single-shell data, in both healthy tissue as well as in peritumoral regions. We present 

comprehensive experiments on both simulated and real data, demonstrating the performance of our method 

compared to existing ones in both healthy and peritumoral tissue.  

2.2. Freewater EstimatoR using iNtErpolated iniTialization (FERNET) 

Following the bi-tensor approach suggested previously [2, 10] , we model the diffusion signal in each voxel 

with two compartments: a tensor compartment representing the underlying tissue and an isotropic 

compartment with a fixed diffusivity equal to the diffusivity of free water in biological tissues. This is 

mathematically modeled as 

𝐴𝑖(𝐷, 𝑓) =  𝑓 𝑒−𝑏𝑞𝑖
𝑇𝐷𝑞𝑖  + (1 − 𝑓) 𝑒−𝑏𝑑         [1] 

where the first term models the tissue compartment and the second term represents the free water 

compartment. Ai is the signal attenuation of the diffusion weighted image acquired along the ith gradient 

direction, f is the tissue volume fraction, b is the magnitude of diffusion weighting, 𝑞𝑖 is ith gradient 

direction, D represents the diffusion tensor used for modeling the tissue compartment, and d is the 

diffusivity in the isotropic compartment, which is fixed at 3.0 x 10-3 mm2/s. Fitting this model using a single-

shell dMRI acquisition is a problem with infinitely many solutions [2]. Finding a solution to such a problem 

requires a combination of a good initialization and optimization. We use a novel initialization designed to 

address both healthy and pathological tissue followed by gradient descent to fit the model. Specifically, we 

propose the following initialization of the tissue volume fraction: 

𝑓𝑖𝑛𝑖𝑡 =   𝑓𝑏=0
1− 𝛼  ×  𝑓𝑀𝐷

𝛼       [2] 

𝑓𝑖𝑛𝑖𝑡 is a log-linear interpolation between two initialization strategies, one denoted as 𝑓𝑏=0 and the other as 

𝑓𝑀𝐷.  

The first strategy, 𝑓𝑏=0, is similar to that proposed in  [2], based on scaling the mean unweighted 

image (𝑆0) with respect to representative unweighted signals of WM (𝑆𝑡) and CSF voxels (𝑆𝑤): 

𝑓𝑏=0 = 1 −  
𝑙𝑜𝑔 (

𝑆0
𝑆𝑡

⁄ )

𝑙𝑜𝑔 (
𝑆𝑤

𝑆𝑡
⁄ )

             [3] 

The resulting map 𝑓𝑏=0 is further constrained by estimates of the minimum and maximum tissue fraction 

corresponding to minimum and maximum expected eigenvalues (i.e., diffusivities) of a tensor modeling 

brain tissue, given by 

𝑓𝑚𝑖𝑛 =
min(𝐴)−𝑒−𝑏𝑑

𝑒−𝑏𝜆𝑚𝑎𝑥 −𝑒−𝑏𝑑 , 𝑓𝑚𝑎𝑥 =
max(𝐴̂)−𝑒−𝑏𝑑

𝑒−𝑏𝜆𝑚𝑖𝑛−𝑒−𝑏𝑑
    [4] 

where 𝜆𝑚𝑖𝑛  and 𝜆𝑚𝑎𝑥 are set to 0.1x10-3 mm2/s and 2.5x10-3 mm2/s, respectively, and 𝐴̂ is the vector of 

signal attenuation, i.e. the values of the diffusion weighted images divided by 𝑆0.  

There are two differences in our proposed estimation of 𝑓𝑏=0 from the previously reported method 

for free water elimination [2]. First, we define 𝑆𝑡 as the 5th percentile of the unweighted signal in a region 
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of WM, and we define 𝑆𝑤  as the 95th percentile of unweighted signal in a region of CSF. Previously, these 

values were defined as the mean unweighted signal within the two regions. Second, initial values outside 

the range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] are set to the nearest of the two values. Previously, the estimated value was replaced 

with the value 
1

2
(𝑓𝑚𝑖𝑛 + 𝑓𝑚𝑎𝑥) in this situation. The significance of these changes in the initialization is 

demonstrated in the experiments described in section 2.4.5.  

The second strategy, 𝑓𝑀𝐷, is given by 

𝑓𝑀𝐷 =  
𝑒−𝑏𝑀𝐷 −  𝑒−𝑏𝑑   

 𝑒−𝑏𝑀𝐷𝑡𝑖𝑠𝑠𝑢𝑒   −   𝑒−𝑏𝑑 
           [5] 

where MD is the mean diffusivity from the standard tensor fit in a voxel of interest, and 𝑀𝐷𝑡𝑖𝑠𝑠𝑢𝑒 

is a fixed value (0.60x10-3 mm2/s [18, 19]) representing the expected MD of a WM voxel that is not impacted 

by partial voluming or pathology. 

Finally, the value of 𝛼 in Equation 2 is set following Equation 3, but constrained to the range [0,1] 

rather than the range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥]. This results in an interpolation of the two strategies which depends on 

𝑆0 in the voxel of interest. For example, in a WM voxel with normal appearing T2, where the 𝑆0 is close to 

the value 𝑆𝑡, the value of 𝛼 is nearly 1 and the result of this interpolation is closer to that using 𝑓𝑀𝐷. In 

regions that appear like CSF in the T2 contrast, the value of 𝛼 is nearly 0 and the result is closer to 𝑓𝑏=0. In 

voxels with intermediate T2 intensity, which includes vasogenic edema, the peritumoral region, and voxels 

with partial volume of CSF, this interpolation is closer to the geometric mean of the two approaches. In this 

way, our initialization is designed to smoothly modulate its behavior based on the signal properties of the 

voxels without relying on any segmentation beyond the selection of representative CSF and WM regions. 

Because the proposed method depends on the 𝑆0 in each voxel, any bias in that image resulting from 

inhomogeneous magnetic field in the scanner will likely lead to a biased 𝑓𝑖𝑛𝑖𝑡 (as well as a biased 𝑓𝑏=0). 

Therefore, we propose the use of bias-field-corrected maps of 𝑆0 for free water elimination problems. The 

significance of the bias field correction will be demonstrated in section 2.4.5.  

In summary, our interpolated initialization method (FERNET) differs from the approach in [2], 

which we subsequently call “b0 initialization”, in three key aspects: 

 A novel initialization strategy that aims to improve the estimation of the free water 

compartment in both healthy and pathological tissue. 

 Bias field correction of 𝑆0 before initialization. 

 The initial fraction values outside of the plausible range are replaced with the nearest plausible 

value rather than the mean before optimization. 

 

2.3. Experiments on simulated data  

Creation of simulated data: To address the lack of ground truth, especially in edematous and infiltrated 

regions, we simulated data with varying ground truth mean diffusivities, anisotropies, and free water 

volume fractions. These simulated datasets follow a bi-compartment model where one of the compartments 

represents tissue and the other is isotropic with a fixed diffusivity (3.0 x 10-3 mm2/s). The simulation of the 

weighted images was obtained using the bi-tensor model available in Dipy’s multi-tensor simulator [20]. 

For simulating an unweighted (b0) image, S0, we calculated the transverse magnetization of a spin-echo 

experiment as a linear sum of the contribution of each compartment as proposed in Phantoms [21]: 

𝑆0 = 𝑓𝑊𝑀𝜌𝑊𝑀 (1 − 𝑒
−𝑇𝑅

𝑇1𝑊𝑀) 𝑒
−𝑇𝐸

𝑇2𝑊𝑀 + 𝑓𝐶𝑆𝐹𝜌𝐶𝑆𝐹 (1 − 𝑒
−𝑇𝑅

𝑇1𝐶𝑆𝐹) 𝑒
−𝑇𝐸

𝑇2𝐶𝑆𝐹        [6] 
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where 𝑓𝑊𝑀 is the volume fraction of white matter,  𝑓𝐶𝑆𝐹 is the volume fraction of CSF, 𝜌 is the proton 

density, and TR/TE are repetition and echo times. The first term of Equation [6] represents the signal from 

WM, while the second term represents the signal from CSF. Although values of 𝜌, T1 and T2 of the two 

tissue types are not known a priori, they do not change when volume fraction is varied. Thus, we simulate 

𝑏0 for each voxel as:  

𝑆0 = 𝑓𝑆0𝑊𝑀
+ (1 −  𝑓) 𝑆0𝐶𝑆𝐹

     [7] 

where 𝑓 is the desired volume fraction of tissue, and 𝑆0𝑊𝑀
 and 𝑆0𝐶𝑆𝐹

 are values taken as reference from 

selected voxels in human data. The diffusion signal, Si, for a given voxel is simulated as: 

𝑆𝑖 =  𝑆0 (𝑓 𝐴𝑡𝑖𝑠𝑠𝑢𝑒 +  (1 − 𝑓) 𝐴𝑤𝑎𝑡𝑒𝑟)     [8] 

where 𝐴𝑡𝑖𝑠𝑠𝑢𝑒 and 𝐴𝑤𝑎𝑡𝑒𝑟 represent the attenuation of tissue and water, respectively. We modeled tissue 

with varying degrees of free water contamination and ground truth diffusion tensor indices. FA and MD 

values of three selected voxels were used as ground truth FA and MD values for the simulation, and their 

corresponding b0 values were used to simulate varying levels of volume fraction. 

We simulated three clinically relevant scenarios: a) vasogenic edema, where the underlying tissue 

structures were preserved, i.e., a simulated “normal” white matter tissue voxel contaminated by water 

(MD=0.60 x 10-3 mm2/s, FA=0.6); b) vasogenic edema, where the underlying white matter tissue had higher 

diffusivity (MD=0.86 x 10-3 mm2/s, FA=0.7); and c) cytotoxic edema, where the underlying tissue had lower 

diffusivity (MD=0.40x10-3 mm2/s, FA=0.2). In each scenario, we added a free water compartment whose 

volume fraction varied from 0 to 1, and ten levels of Rician noise (signal to noise ratio (SNR) of 10 to 90, 

as well as noise-free), with 100 simulations per noise level. In addition, for every simulated tensor, we 

rotate the tensor directions randomly 100 times. Thus, there were 1,000,000 simulated tensors and free 

water compartments for each of the three scenarios. For more details on the parameters used for simulations, 

see Table 1. 

Table 1. Parameters selected for simulating data to validate the proposed method 

  Range of values Number of simulations 

MD values (0.4 - 0.86) x 10-3 mm2/s 3 

FA values 0.2 - 0.7 3 

Free water volume fractions 0 - 0.9 10 

Rotation of the tensor directions Random 100 

Rician noise  10 - 90 (in steps of 10), 

noise-free 

1000 

Total  3,000,000 

 

Free water estimation on simulated data: We assess our proposed method using ground truth simulated 

free water values as a reference point, by comparing the free water estimation following FERNET with the 

estimation following the b0 initialization. For all simulations, we calculated the error of free water 

estimation as the difference between ground-truth free water and estimated free water. In each scenario, the 

error in free water volume fraction was calculated when the ground truth free water was changed from 0 to 

0.9. Additionally, the effect of SNR was investigated at a free water volume fraction of 0.4. 

2.4. Experiments on human data 

2.4.1 Datasets 

Dataset 1: 32 participants were selected from an ongoing tumor study, including 23 healthy controls, and 

9 patients with a diagnosis of glioblastoma. All participants underwent a multi-shell diffusion acquisition 
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with b-values of 300 (15 directions), 800 (30 directions), and 2000 s/mm2 (64 directions) and 9 unweighted 

volumes. The data were acquired using a Siemens 3T TIM Trio scanner with a 32-channel head coil and 

echo planar (EP) sequence with TR=5216 ms, TE=100 ms, at a spatial resolution of 2 x 2 x 2 mm. T1, T2, 

FLAIR, and T1 contrast-enhanced (T1CE) scans were also acquired for the 9 brain tumor patients.  

Dataset 2:  This dataset comprised 143 brain tumor patients (89 glioblastoma/54 metastasis), putatively 

representing a range of levels of tumor cell infiltration and extent of edema. The age range of this data was 

19 to 87 (77 females). Single-shell diffusion data were acquired on Siemens 3T Verio scanner with 

TR=5000ms and TE=5000/86ms, 3 unweighted volumes, and 30 diffusion weighted volumes at a b-value 

of 1000 s/mm2. The acquired spatial resolution was 1.72 x 1.72 x 3 mm. Additionally, T1, T2, FLAIR, and 

T1CE were acquired.  

Dataset 3: This dataset comprised 216 healthy controls from the Philadelphia Neurodevelopmental Cohort 

(PNC) [22]. The age range of these selected subjects was 18 to 23 years. There were 118 females and 98 

males. The data were acquired on a 3T Siemens TIM Trio scanner, using a 32-channel head coil and a 

twice-refocused spin-echo (TRSE) single-shot EPI sequence with TR=8100 ms and TE=82 ms, at a b-value 

of 1000 s/mm2 for a total 64 weighted diffusion images and seven unweighted images. The acquired spatial 

resolution was 1.875 x 1.875 x 2 mm. 

Data preprocessing: All datasets were investigated visually for quality assurance (QA). The datasets were 

denoised [23] and corrected for eddy current-induced distortions [24]. Voxels were resampled to 2mm 

isotropic resolution. The b0 images were extracted and skull-stripped using FSL’s BET tool [25]. Bias 

correction of the b0 images was performed with N4BiasFieldCorrection from the Advanced Normalization 

Tools (ANTs) package. A DTI model was fit within the brain mask using an unweighted linear least-squares 

method. FA and MD maps of healthy controls in Dataset 1 and Dataset 2 were non-linearly registered to 

the JHU-MNI-ss (“Eve”) atlas [26] using the SyN registration algorithm from the ANTs package. 

Automatic tumor and peritumoral region segmentation was obtained in the patients from Dataset 1 and 

Dataset 2 using GLISTR [27], after co-registering the T1, T2, FLAIR and T1CE images using FSL’s flirt 

tool. 

2.4.2. Comparison of single-shell and multi-shell free water estimations  

Since ground truth values of the free water volume fraction in human data are not available, we used the 

values estimated through a multi-shell estimation [28], utilizing all the shells available in Dataset 1, as a 

reference standard. We further extracted the b=800 s/mm2 shell to obtain single-shell data on which the two 

initialization approaches for free water estimation were applied. Two analyses were performed. First, the 

single-shell methods were compared to the reference standard by calculating voxel-wise correlation 

coefficient and mean square error, using the 23 healthy controls which were co-registered to the same atlas. 

The second analysis was performed in the peritumoral regions of 9 tumor patients to compare the estimated 

free water of the two single-shell approaches against the reference standard. 

2.4.3. Free water estimation in brain tumor data 

We selected two tumor patients from Datatset 2: Patient 1 with a metastatic tumor and Patient 2 with 

glioblastoma. These represent case studies for investigating the results of the two approaches. We visually 

compared the free water and corrected FA of the peritumoral region to healthy tissue in the contralateral 

hemisphere.  

2.4.4 The effect of regularization on free water estimation 

In order to demonstrate that our proposed initialization alleviates the dependence on regularization, for 

Patient 2 discussed in 2.4.3, we compared the histogram of the free water values in the whole brain as well 

as in the peritumoral region with and without the use of regularization for the two initialization approaches.  
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2.4.5. The effect of bias field correction and constraints on free water estimation 

As shown in Equation 3, the initialization depends on representative b0 signals in both tissue and free water 

compartments as well as the b0 signal itself. We applied a bias field correction [29] on the b0 image, and 

compared results of free water estimation with and without the application of bias correction. Analysis was 

performed using co-registered data from Dataset 3. At every voxel, the percentage of controls with 

artifactual initial estimates of the free water corrected tensor, defined as MD < 0.40x10-3 mm2/s [30], was 

calculated. In addition, we investigated the effect of constraining the initialized free water values to the 

extremes of the range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥], rather than the value 
1

2
(𝑓𝑚𝑖𝑛 + 𝑓𝑚𝑎𝑥), as described in section 2.2.  

2.4.5. Tractography 

Tractography was performed on Dataset 2 (143 brain tumor patients) using Diffusion Toolkit [31], on 

tensor images calculated with and without FERNET free water elimination. Tensors calculated without free 

water elimination are referred to as the “standard” tensor fit. The second order Runge-Kutta algorithm was 

used for tracking, with an angle threshold of 45ο, a step size of 1 mm, and an FA threshold of 0.2. Five 

bundles of interest (corticospinal tract, inferior longitudinal, inferior fronto-occipital, uncinate and arcuate 

fasciculi) in each hemisphere were extracted from each tractogram, using the RecoBundles algorithm [32], 

with a pruning parameter of 7 mm. Finally, the “edema coverage”, defined as the percentage of voxels in 

the peritumoral edema region containing one or more streamlines belonging to any of the ten bundles of 

interest, was computed for every patient with and without free water elimination. A percentage difference 

was calculated relative to the edema coverage of the tractography without free water elimination. 

3.  RESULTS 

3.1. Free water estimation on simulated data  

Fig. 1 presents the results of free water estimation on three simulated scenarios:  cytotoxic edema with 

underlying pathological tissue (Fig.1 A), vasogenic edema with underlying healthy tissue (Fig.1 B), and 

vasogenic edema (Fig.1 C). Our findings show that in the presence of simulated edema (FW>0.3), FERNET 

improved the estimation of the free water across the three scenarios (Fig. 1). The FERNET estimation had 

less variance than the b0 initialization, as shown by the smaller spread in the violin plots in Fig.1 A 

(FW=0.4, FW=0.5), Fig.1 B (FW=0.6, FW=0.7), and Fig.1 C (FW=0.6, FW=0.7). Moreover, in the case of 

simulated healthy tissue (Fig.1 B, where FW<0.3), we observed improved estimation of the free water 

compartment. There was no effect of SNR on the mean free water estimation in each of the three scenarios 

(Fig.1, A-C, 2nd row). As expected, the variance in free water estimation decreased with increasing SNR. 

3.2. Free water estimation on human data 

Fig. 2 shows the results of comparing the free water estimation using FERNET and the b0 initialization 

with the free water estimation obtained from the multi-shell method used as a reference standard in the 

absence of ground truth. Voxel-wise maps of correlation coefficient and mean square error (MSE) of the 

free water fraction between single-shell methods and the multi-shell method (Fig. 2 A for the b0 

initialization, Fig. 2 B for the interpolated initialization of FERNET), showed a weaker correlation between 

the free water maps, especially in WM regions, and a relatively higher MSE in the b0 initialization when 

compared to FERNET. These correlation findings were consistent with Fig. 2 C, where the free water values 

in WM of 23 healthy controls using FERNET were more aligned with the identity line when compared to 

the multi-shell reference standard. The correlation between b0 initialization and multi-shell estimation was 

0.39, and the correlation between FERNET and multi-shell estimation was 0.76. The correlation of free 

water values in the peritumoral regions of 9 patients (Fig. 2 D) between the b0 initialization and the 

reference standard was 0.45, and between FERNET and the reference standard was 0.71. 
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Figure 1:  

Free water estimation on simulated data. The error in free water estimation using simulated data with 

varying ground truth volume fraction is presented using violin plots. A) The simulated MD of 0.4x10-3 

mm2/s represents cytotoxic edema. Two models of vasogenic edema are simulated:  B) a simulated MD of 
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0.6x10-3 mm2/s approximately equivalent to that of a healthy WM voxel, and C) a simulated MD of 0.86x10-

3 mm2/s higher than that of healthy WM. All experiments in the first rows have an SNR of 40, with free 

water varying from 0 to 0.9. The y-axis represents the difference between the free water estimation and the 

corresponding ground truth of free water (x-axis). Green dotted lines in each plot represent the zero line, or 

perfect free water estimation. Violin plots of the two methods are staggered for clarity. Results show that 

FERNET initialization is more accurate in estimating free water than the b0 initialization where FW>0.3. 

D) shows the effect of SNR on the error in free water, where SNR varies from 10 to 90, followed by a 

simulation with no noise. Although SNR has an effect on the variance of error in free water, the effect of 

SNR on the mean error in free water is negligible. 

 

3.3. Free water elimination in brain tumor data 

Fig. 3 shows the free water volume fraction and the corrected FA maps using the two free water estimation 

methods on two brain tumor patients: Patient 1 with brain metastasis and Patient 2 with glioblastoma. 

FERNET free water maps had spatially smoother contrast than those from the b0 initialization, and FA 

values in the WM ipsilateral to the tumor matched the FA of the contralateral WM better, especially in 

Patient 1. 

3.4. The effect of regularization on free water estimation 

Fig. 4 shows the behavior of the free water estimation approaches to regularization in two brain tumor 

patients. The effect of regularization is assessed via the difference maps of the free water volume fraction 

obtained with and without regularization, in the peritumoral area and the whole brain. The histograms of 

the free water estimation in the whole brain and in the peritumoral region show a closely matched free water 

estimation for regularized and non-regularized approaches when using FERNET.  

3.5. Effect of bias field correction and constraints on initial free water 

Fig. 5 shows the results of investigating the use of bias field correction in free water elimination.  It shows 

the percentage of participants that yielded an artifactual fit (MD<0.40x10-3 mm2/s) in the initial corrected 

tensor (before the optimization phase) at each voxel in the brain, with (Fig. 5 A) and without (Fig. 5 B) bias 

field correction. Without bias field correction, the corrected tissue tensor is initialized with indices that are 

physiologically implausible. Such diffusivity values are estimated in a large percentage of controls in the 

peripheral regions of the cortex and cerebellum, areas which are most impacted by bias. Finally, Fig.5 C 

shows that constraining the initial free water to the range [fmin, fmax] rather than replacing with the mean 

value (see section 2.2) leads to a more plausible contrast in the free water volume fraction map, more similar 

to the FLAIR contrast. 

3.6. Tractography: 

Fig. 6 shows the effect on tractography as a result of free water elimination in a large dataset of 143 brain 

tumor patients (Dataset 2). Fig. 6A is an example case, showing a comparison of the arcuate fasciculus 

between standard tensor-based tracking and FERNET-based tracking. In extending this tractography to all 

the patients, we found that the tractography based on FERNET covered more of the peritumoral region than 

tractography using the standard tensor fit. This is depicted in Fig. 6 B by a histogram of percent difference 

in coverage of the edematous region by tracts. In a majority of patients, the percent difference in edema 

coverage was positive, indicating that tractography on free-water-corrected tensor maps traveled through a 

larger portion of the peritumoral region.  
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Figure 2: 

Free water estimation in human data compared to the multishell reference standard of Hoy et. al [28]. 

Correlation coefficient and mean square error (MSE) are measured at every voxel for 23 healthy controls 

to assess the contrast and difference between the free water (FW) map derived from A) b0 initialization and 

C) Healthy white matter 

B) FERNET
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B) interpolated initialization FERNET compared to the FW map derived from multi-shell. C) shows the 

scatterplots of free water fraction values within the WM of 23 controls, demonstrating that the proposed 

interpolated initialization is more aligned with the reference standard in WM. D) shows the scatterplots of 

free water fraction in the peritumoral regions of 9 brain tumor patients, demonstrating that neither of the 

single-shell methods obtained an estimation in the peritumoral region that is perfectly consistent with 

reference standard. However, correlations are higher with FERNET (r=0.71) than with b0 initialization 

(r=0.45). 

 

 

 

 

Figure 3: 

Comparison of free water estimation and corrected FA maps between the two initialization methods in two 

brain tumor patients. Patient 1 is a metastatic brain tumor patient and Patient 2 is a glioblastoma patient. 

Corrected FA maps obtained with FERNET (B, D) show better agreement between the peritumoral region 

and the contralateral WM compared to b0 initialization (A, C). Free water volume fraction maps obtained 

with FERNET are spatially smoother in the peritumoral region.  
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Figure 4: 

Effect of regularization in the optimization phase after FERNET and b0 initialization in a tumor patient. A 

and B show the difference images of free water volume fraction between regularized and non-regularized 

fits of the b0 initialization method and FERNET, respectively. Histograms of free water volume fraction in 

the whole brain with and without regularization using b0 initialization differ greatly (C), while the 
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histograms of free water using FERNET closely match (D). Histograms in E and F demonstrate a similar 

effect when limited to the peritumoral region.  

 

 

Figure 5: 

Effect of bias field correction and heuristics on corrected diffusion indices and free water volume fraction. 

Evaluation of FERNET and b0 initialization on a large dataset (Dataset 3) of healthy controls showed that 

A) data without bias field correction produced more physiologically implausible voxels (defined as 

corrected MD < 0.4x10-3 mm2/s) using FERNET than data with bias field correction (B), especially in GM 

regions and in the cerebellum, which are the areas impacted most by bias. The colorbar represents the 

percentage of controls with physiologically implausible fits. C) Constraining initial free water estimation 

to the boundaries of feasible free water values instead of the mean value (see Equation 4) yields a free water 

map in the peritumoral region that is more plausible and more aligned with the FLAIR contrast. 
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Figure 6: 

Fiber tractography with and without free water elimination using FERNET. A) Tractography of the arcuate 

fasciculus in one example brain tumor patient demonstrates the improvement in tracking inside the 

peritumoral region using free water elimination. Using standard tensor fit based tracking, streamlines appear 

to stop prematurely when they reach voxels affected by the accumulation of free water in the peritumoral 

region. The overlap of both approaches is shown, highlighting the improvement observed with FERNET. 

B) Tractography of ten major tracts in 143 tumor patients showed an increase in the volume of the 

peritumoral region traversed by streamlines, as shown in a histogram of percent difference (relative to 

standard tensor-based tractography) in edema coverage. The findings demonstrate that most patients exhibit 

an increase in edema coverage when free water elimination is employed.  
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4.  DISCUSSION 

We have introduced a new initialization strategy, FERNET, for the free water elimination problem in single-

shell data, aimed at improving the characterization of peritumoral edema using clinically feasible diffusion 

MRI. The efficacy and wide applicability of our method in estimating free water fraction has been 

demonstrated comprehensively both on simulated data representing vasogenic and cytotoxic edema, as well 

as datasets of healthy controls and tumor patients of different tumor types. We have shown that our strategy 

improves the accuracy of free water elimination for peritumoral regions.  

Most free water elimination methods to date have been designed for healthy tissue. Developing a method 

for a pathology, like tumors, is very challenging due to the absence of ground truth. We aimed to address 

this issue by generating simulated data representing vasogenic and cytotoxic edema using different ground 

truth diffusivities, anisotropies, and free water volume fractions, and tested our proposed interpolated 

initialization against the existing b0 initialization method. Fig. 1 highlights the significant impact of the 

initialization strategy on the free water estimation using three simulated clinically relevant scenarios. The 

findings show that the proposed initialization strategy yields improved free water estimation, especially in 

voxels affected by simulated “edema”. Improvement in free water estimation was also observed in the 

“healthy” tissue. Also, we showed (Fig.1 B and C at simulated FW=0.6 and FW=0.7) that the interpolation 

approach provides a robust estimation that is less susceptible to noise. Although, as expected, the free water 

estimation became increasingly robust as SNR increased, the effect of SNR on the mean of free water 

estimation was negligible (Fig.1 D). 

In order to translate the findings in Fig.1 to human data, we used the free water estimated by Hoy et al. [28] 

as a reference standard for free water in human data, as no ground truth exists, especially when tissue is 

contaminated with vasogenic and cytotoxic edema. The estimation in this method relies on multi-shell data 

and claims to have a closed form solution to a problem that is ill-posed when attempted using single-shell 

data. The voxel-wise correlation and MSE maps in Fig. 2 A and B show that FERNET based free water 

maps, although using a single shell, are more similar in contrast to the reference standard, and they correlate 

better with the free water estimation of this advanced method compared to b0 initialization. This increased 

agreement of FERNET, as seen in Fig. 2 C and D, suggests the superiority of FERNET initialization in the 

peritumoral region and also in healthy tissue. 

There were several methodological choices associated with free water elimination using FERNET. As free 

water elimination using single-shell DTI is an ill-posed problem, previous approaches (Pasternak et al. 

2009) have emphasized the importance of regularization. Fig. 4 A shows that FERNET initialization is less 

sensitive to regularization, as shown in difference images between regularized and non-regularized 

optimization following FERNET initialization and b0 initialization. This implies that FERNET yields a 

solution that varies smoothly across neighboring voxels. On the other hand, the estimation using b0 

initialization appears to be more influenced by regularization, with most impacted regions in healthy-

appearing GM and the boundaries of the peritumoral region. This effect is further illustrated by the 

histograms of free water fraction with and without regularization in Fig. 4 C-F. 

The efficacy of choices we made in the implementation details of our initialization was further demonstrated 

in Fig. 5. In Fig.5 A and B, we demonstrated that applying bias field correction to the data reduced the 

prevalence of implausible diffusivity values in a large set of healthy controls, which were defined as having 

MD less than 0.4x10-3 mm2/s, a value that is well below most estimates of the MD of healthy brain tissue. 

This finding suggests that, in the presence of magnetic field inhomogeneity in the scanner, the preprocessing 

of diffusion data may play a significant role in modeling the diffusion signal with this bi-compartment 
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model, and it must be approached carefully. Fig. 5 C exhibits the effect of constraining our initial volume 

fraction estimate to the boundaries ([fmin, fmax]) and scaling the b0 image by the 5th and 95th percentile of the 

unweighted signals of WM and CSF, respectively. As can be seen in the figure, the FERNET initialization 

resulted in a contrast in the volume fraction map that was consistent with that obtained from FLAIR images. 

FLAIR is the clinical modality of choice to draw inferences about the peritumoral region, because in FLAIR 

images the inversion time is carefully chosen to null the signal from the CSF while increasing the signal 

intensity in edema and areas of inflammation with increased partial voluming of fluid. This suggests that 

the free water maps obtained with FERNET may have clinical relevance in locating and characterizing 

lesions and areas of inflammation such as in the peritumoral region, multiple sclerosis lesions, or 

inflammation caused by traumatic brain injury. 

The clinical significance of FERNET is underscored by examining the free water volume fraction maps in 

different types of tumors that may have varying degrees of vasogenic and cytotoxic edema. The findings of 

Fig. 3 in the peritumoral region of two brain tumor patients, one with a metastatic tumor and one with a 

diagnosis of glioblastoma, showed that the interpolated initialization allowed for reconstructing FA in the 

region of WM ipsilateral to the tumor, despite the presence of edema. The b0 initialization based free water 

estimation struggled significantly, especially in the case of metastatic brain tumor (Patient 1). Thus, 

FERNET is generalizable to peritumoral regions with different types of characteristics.  

Finally, tractography algorithms with their ability to delineate eloquent fiber tracts has important clinical 

implications for the surgical treatment of malignant brain tumors [33]. Although no current method solves 

the inherent limitations of fiber tractography, the techniques available are sufficiently specific and sensitive 

to make fiber tractography a valuable tool for the neurosurgeon [34, 35]. However, the standard tensor fit 

does not account for any free water compartment, and in the presence of significant partial voluming of 

extracellular fluid, indices derived from the fitted tensor represent erroneous estimations of the underlying 

tissue, including low FA. This may cause some tracking algorithms to stop prematurely (Fig. 6 A) in fluid-

contaminated regions, leading to spuriously misshapen and/or broken tracts [36]. Although this is more 

pronounced in the presence of edema and inflammation related to liquefactive necrosis, it is important to 

note that even in the absence of pathology, cerebrospinal fluid (CSF) partial voluming affects the 

reconstruction of WM tracts such as the fornix, potentially resulting in misleading inferences about brain 

connectivity.  

The improved free water estimation that our initialization provides leads to a better modeling of brain tissue. 

Hence, the elimination of the contamination of free water in the diffusion signal, whether it is due to partial 

voluming or pathology, results in better tractography than the standard single tensor model can provide. 

Our method of free water elimination (and its subsequent impact on tractography) was evaluated in 143 

brain tumor patients (89 gliomas and 54 metastases), comparing standard tensor and tensors obtained after 

free water elimination using FERNET. Fig. 6 B demonstrates that the fiber tractography in peritumoral 

region is significantly improved with our method, as can be seen in the histogram of percent difference of 

edema coverage, showing increased volume covered by streamlines generated by tractography up to 1000% 

in some patients. Some participants exhibit a decrease of the coverage inside the peritumoral region, which 

may be due to the reduction of the spurious streamlines post free water elimination.  

There is a growing evidence that the objective of “maximal safe resection” [37, 38] is best achieved with 

detailed mapping of the brain tumor and surrounding white matter tracts. This emphasizes the importance 

of free water elimination for tractography, paving the way for robust surgical planning, and superior 
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tracking intraoperatively [39]. FERNET provides a method that can possibly enhance clinical outcomes, 

due to the improvement in tractography, which is expected to have a large impact on a broad spectrum of 

applications that use dMRI, including neurosurgical planning [40, 41], assessing connectivity changes in 

pathologies traumatic brain injury [42], stroke [43], and in pre-clinical studies such as mapping the 

structural connectivity of neural ganglia [44].  

This study has a few limitations. Due to the absence of the ground truth values in human data, this study 

relies on an estimation of free water using a multi-shell acquisition as a reference standard. We trust that 

this is the best that can be done for healthy or peritumoral tissue, both of which cannot be biopsied to 

generate pathology-based ground truth. Our experiments on human data are amply supported by the large 

number of experiments on simulated healthy and pathological tissue. Furthermore, this bi-compartment 

model represents white matter with only a single tensor, causing tractography to be limited in the crossing 

fiber regions, as it is in standard tensor-based tractography. However, the observed improvement in 

tractography in the peritumoral region, even with clinically acquired data where higher order diffusion 

models cannot be fitted, underlines the importance of FERNET. 

 

5.  CONCLUSIONS & FUTURE WORK  

We have designed a free water estimation paradigm based on a novel initialization approach, FERNET, 

that can be applied to single-shell diffusion acquisitions, readily available in the clinic. The initialization 

approach, which interpolates diffusivity and T2 information (b0), improves free water estimation in the 

tissue contaminated by edema and/or infiltrative neoplasm, as well as healthy tissue, compared to traditional 

approaches. This is a significant contribution because of the widespread prevalence of single-shell diffusion 

acquisitions in clinical studies.  

FERNET initialization for free water estimation has a myriad of applications in the field of diffusion MRI, 

especially in pathologies that lead to edema, like tumors and traumatic brain injury. As it is designed to 

work with clinically feasible single-shell diffusion data, it can be used to improve tractography in 

retrospective studies using data that is no longer considered state of the art, as suggested by our 

demonstrated improvement in tractography in a cohort of brain tumor patients. A comprehensive 

investigation of different tractography algorithms, deterministic and probabilistic, is beyond the scope of 

this manuscript and will be investigated in the future. Our free water map delivers valuable information 

about the free water content of brain tissue in the presence of pathology. This may be used to distinguish 

different types of brain tumors and their genetic underpinnings based on the nature of the peritumoral tissue, 

paving the way for better radiomic markers of cancer.  

The applicability of FERNET in clinically feasible acquisitions is expected to facilitate investigations of 

large tumor datasets like ABTC (http://www.abtconsortium.org), that have single shell acquisitions. The 

tractography tested here was based on single fiber estimation, and approaches with more complicated fiber 

models may assist in simultaneously resolving partial volume and complex fiber architecture in the context 

of peritumoral regions. Finally, an interesting application of this method can be in improved estimation of 

structural connectomes in the presence of edema, as the estimation of structural connections in the brain is 

expected to improve with a better estimation of the underlying tissue compartment after mitigating the 

effects of partial voluming and/or pathology. These avenues will be explored in future studies.  
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