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Abstract

Background: Performing well-powered randomised controlled trials (RCTs) of new treatments for rare diseases is
often infeasible. However, with the increasing availability of historical data, incorporating existing information into
trials with small sample sizes is appealing in order to increase the power. Bayesian approaches enable one to
incorporate historical data into a trial’s analysis through a prior distribution.

Methods: Motivated by a RCT intended to evaluate the impact on event-free survival of mifamurtide in patients
with osteosarcoma, we performed a simulation study to evaluate the impact on trial operating characteristics of
incorporating historical individual control data and aggregate treatment effect estimates. We used power priors
derived from historical individual control data for baseline parameters of Weibull and piecewise exponential
models, while we used a mixture prior to summarise aggregate information obtained on the relative treatment
effect. The impact of prior-data conflicts, both with respect to the parameters and survival models, was evaluated
for a set of pre-specified weights assigned to the historical information in the prior distributions.

Results: The operating characteristics varied according to the weights assigned to each source of historical
information, the variance of the informative and vague component of the mixture prior and the level of
commensurability between the historical and new data. When historical and new controls follow different survival
distributions, we did not observe any advantage of choosing a piecewise exponential model compared to a
Weibull model for the new trial analysis. However, we think that it remains appealing given the uncertainty that will
often surround the shape of the survival distribution of the new data.

Conclusion: In the setting of Sarcome-13 trial, and other similar studies in rare diseases, the gains in power and
accuracy made possible by incorporating different types of historical information commensurate with the new trial
data have to be balanced against the risk of biased estimates and a possible loss in power if data are not
commensurate. The weights allocated to the historical data have to be carefully chosen based on this trade-off. Further
simulation studies investigating methods for incorporating historical data are required to generalise the findings.

Keywords: Aggregate treatment effect, Bayesian randomised survival trial, Individual control data, Mixture prior, Power
prior, Rare disease, Simulation study
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Background
Evaluating new treatments for rare diseases in a timely
manner can be challenging, even if patients can be re-
cruited across a national or international network of
centres [1–7]. Around 5000 to 8000 rare diseases affect
in total 30 million people in the European Union [8].
Furthermore, in an era of personalised medicine, efficacy
trials of targeted therapies will need to be conducted in
increasingly restricted subgroups of patients [9, 10].
Therefore investigators are frequently confronted with
the problem of how to design and analyse a randomised
clinical trial when the available sample size is small [11].
In the meantime, more and more data are being gener-

ated: this may be real world evidence or evidence gener-
ated from clinical trials conducted by pharmaceutical
companies or academic clinical trials units; evidence
may be in the form of individual patient data (IPD) or
aggregate information; and data may be accessed
through repositories or registries [12]. Evidence on treat-
ment effects may be extracted from a systematic review
of the literature. The key question is how can we take
advantage of such external information when designing
and interpreting a contemporary randomised clinical
trial. Assuming that, in the rare disease setting, the
standard of care often remains relatively stable over time
as treatment options are slow to advance, we can expect
some commensurability between the performance of the
control therapy in historical studies and the new trial.
The term of commensurability, in our context, means
that the historical data and new data of the control ther-
apy are consistent with being generated by statistical
processes underpinned by similar parameters. The
Bayesian approach can be seen as a promising alterna-
tive, or complement, to the conventional frequentist ap-
proach which enables one to explicitly integrate external
data into inferences [7]. In 2006, the Food and Drug Ad-
ministration published a guideline for the use of Bayes-
ian statistics in medical device clinical trials [13] which
highlighted the advantages of using historical data to for-
mulate a prior distribution for a parameter of interest,
while insisting on the importance of down-weighting or
discounting this information. In 2017, they published a
guideline for the use of antibacterial therapies for pa-
tients with an unmet medical need for the treatment of
serious bacterial diseases which encourages the use of
historical information as a control for the trial in some
particular situations [14].
First proposed several decades ago [15], the idea of in-

corporating historical data into new trials has attracted at-
tention as one approach for improving the feasibility and
power of trials when only small sample sizes are available.
Following the seminal article of Pocock [15] in 1976 which
proposed six criteria for selecting historical controls, sev-
eral methods have been developed [16–24]. A recent

review identified different Bayesian and frequentist
methods for incorporating historical data into a contem-
porary trial [25] which may be relevant to paediatric stud-
ies, where small sample sizes are a common challenge. For
Bayesian methods, the authors distinguished between dy-
namic methods, where external data are adaptively
down-weighted according to their commensurability with
the new data, and non-adaptive methods, where a weight
for the external data is pre-specified.
Among the different methods available for

down-weighting historical data which are also applicable
to censored endpoints, we consider two approaches as
particularly promising. The first approach is based on a
prior which is weighted mixture of an informative prior
and a vague component. This approach has been consid-
ered by authors in several contexts, for example, to in-
corporate data from an original geographic region into a
bridging trial [26, 27] or historical controls into a new
trial [21, 22]. In the latter case, the informative compo-
nent may be a prior predictive distribution derived from
a meta-analysis of historical trials [21]. More generally, a
class of ε-contaminated priors may be used to evaluate
the sensitivity of an analysis to plausible deviations about
an informative prior [28, 29]. The second approach we
will consider, called the power prior, was developed by
Ibrahim et al. [16]. It consists in raising the likelihood of
the historical data to an exponent α0 representing the
degree of commensurability between the historical and
new trial data; thus α0 controls the weight given to the
historical data in the posterior distribution. Two versions
exist depending on whether α0 is considered as a fixed
value or a random variable. When considered as fixed,
the power α0 can be specified from expert opinion on
the plausibility of the commensurability of the historical
and new patient data. We have chosen to focus on this
latter version since it is easier to communicate to clini-
cians and does not react to observed differences between
the historical and new data, knowing that disentangling
true between-trial heterogeneity from random variation
may be impossible in the setting of rare diseases.
While a rich array of Bayesian methods for incorporat-

ing historical data exist, these approaches are still rarely
implemented in practice. A systematic review of clinical
trials published before September 2015 identified only
28 trials using Bayesian methods to analyse a censored
endpoint, and of these, only four made use of historical
data to estimate the treatment effect [30]. In these trials,
historical data were incorporated without being
down-weighted and without survival regression models
being used. One possible explanation for this slow up-
take of methods is that the process of selecting a survival
model, a method to incorporate the historical data, and
a weight reflecting their perceived relevance is complex
and open to criticism. This complexity increases when
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we wish to incorporate both IPD on historical controls
and aggregate level data in the form of an estimate of
the relative treatment effect obtained from a systematic
literature review. Additional methodological concerns
are encountered when designing rare disease trials when
there will often be scant prior evidence to guide investi-
gators on what weight to assign the historical data and
uncertainty about the correct model for the baseline sur-
vival hazards.
The current work aims to evaluate the advantages of a

Bayesian approach in the setting of a small size rando-
mised phase 2 trial, the Sarcome-13 trial, which is cur-
rently in set-up. This trial will evaluate the benefit in
terms of event-free survival (EFS) of mifamurtide in
combination with post-operative chemotherapy com-
pared with chemotherapy alone. Due to the rare disease
setting, we relaxed the alpha level of the one-sided
log-rank test to a significance level of 10% for the stand-
ard frequentist approach [7, 31], and a pragmatic re-
cruitment target has been set of accruing 105 patients
over 3 years (with 2 years of follow-up for the last pa-
tient). If this target is met, the power is 80% if the true
hazard ratio (HR) is 0.55 (based on 43 events), whereas
it decreases to 33% and 20% for a 0.786 (48 events) and
0.886 (50 events), respectively. It is acknowledged that a
HR of 0.55 is a very optimistic treatment effect which
does not reflect what is anticipated. A HR of 0.786 is
considered more realistic and would still be a clinically
meaningful effect, although it is clear that the trial will
be underpowered to detect HRs of this magnitude. Des-
pite this, the Sarcome-13 investigators believe that in
this particular setting, evidence from a small RCT is bet-
ter than no randomised evidence at all. We seek to aug-
ment data from the Sarcome-13 study with relevant
historical information to increase the trial’s power to re-
liably detect smaller, but more plausible, effects.
Due to the form of the available historical data, we

propose an approach using power (with fixed weight)
[16] and mixture priors [22] to incorporate information
derived from historical IPD and aggregate effect esti-
mates, respectively. The operating characteristics of a
Bayesian analysis of the Sarcome-13 trial based on these
priors are evaluated through a simulation study consid-
ering a set of scenarios representing different degrees of
commensurability between the historical and new data.

Methods
Incorporating two sources of historical information:
individual and aggregate level data
In the setting of the Sarcome-13 trial, two sources of histor-
ical data were immediately available. The first source of
historical information is IPD on patients with high-risk
osteosarcoma from the OS2006 trial (NCT00470223) [32].
This trial included 318 patients and used the same

backbone chemotherapy as will be used in the Sarcome-13
trial. Selecting from OS2006 all those patients who fulfilled
the planned Sarcome-13 eligibility criteria, referred to as
the SARC-OS subgroup thereafter, we identified EFS data
on 165 patients (73 events) with a median follow-up of 4.1
years [range: 0.2; 5]. We truncated these historical data to
match with the duration of the new trial. The second
source of historical information is the two relative treat-
ment effects on EFS of post-operative chemotherapy plus
mifamurtide versus post-operative chemotherapy alone
which was reported by the INT-0133 trial [33, 34]. From
the two estimated HRs of this trial (localised [33] and meta-
static [34] osteosarcoma), we obtain an overall estimate of
the treatment effect (HR = 0.786; 95%CI, 0.63–0.98) after
checking for potential heterogeneity. The corresponding es-

timates of the log hazard ratio (cβH ), which is the parameter
that we will consider thereafter, and its variance (s2) are −
0.241 and 0.012, respectively. This variance is approxi-
mately equivalent to what would be obtained if the estimate
was based on 329 events (Schoenfeld formula [35]). Details
of the Sarcome-13 design and available historical data are
described in Additional file 1.

Prior distribution for control arm parameters based on IPD
The power prior is a prior formed by raising the likeli-
hood function of the individual historical data DH

C to a
power α0 to control the impact of the historical data on
the posterior distribution. Let θ be the vector of parame-
ters of the survival model chosen to represent EFS on
the control arm, and let π0(θ) denote the initial prior,
that is, the prior distribution for θ before the historical
data DH

C are observed (where π0(θ) can for example, be
taken to be a product of non-informative independent
priors for each element of θ). In our case, DH

C represents
the IPD on the SARC-OS patients (See Generation of
IPD on historical controls sub-section). Thus we define
the power prior distribution of θ as

π θjDH
C ; α0

� �
∝L θjDH

C

� �α0 π0 θð Þ
where α0 is a fixed constant with 0 ≤ α0 ≤ 1. When α0 = 0,
πðθjDH

C ; α0Þ ≡ π0ðθÞ , which means that the historical
data are not incorporated into the prior distribution.
When α0 = 1, equal weight is given to the likelihood of
the historical data LðθjDH

C Þ and the likelihood of the new
trial data, LðθjDN

C Þ in the posterior distribution given by

π θjDN
C ;D

H
C ; α0

� �
∝L θjDN

C

� �
π θjDH

C ; α0
� �

where DN
C represents the IPD for control patients from

the new trial. Note that the dimension of θ will depend
of the specification of the survival model: for a Weibull
model, θ = θw = (β0, γ) with intercept (β0) and scale par-
ameter (γ); and for a piecewise exponential model, θ
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= θp = (λ1, λ2, λ3) with λi the hazard rate for the ith time
interval. The likelihood function of the historical data
under Weibull or piecewise exponential regression
models is detailed in Additional file 2.

Prior distribution for the treatment effect based on
aggregate data
Prior beliefs about the treatment effect, β, defined as the
log-HR, are represented by a two-component mixture
prior [22] given by

π βjDH
TE ;ω

� � ¼ ω� πH βjDH
TE

� �þ 1−ωð Þ � π0 βð Þ

where πHðβjDH
TEÞ is an informative component summaris-

ing the existing information (DH
TEÞ about the parameter β.

We assume that the prior distribution for the log-HR is
normal [36]: πHðβjDH

TEÞ � NðμH ; σ2HÞ with μH = log(0.786)
and σ2H ¼ 0:012 based on the INT-0133 published data.
Meanwhile, π0(β) is a vague component, which ensures we
have some robustness to deal with a prior-data conflict.
Based on preliminary simulations, we have set π0(β)~N(0,
10). Lastly, ω ∈ [0, 1] reflects the prior plausibility of the
commensurability of the historical treatment effect estimate
and the treatment effect in the new trial: ω = 0 indicates a
vague prior and ω = 1 indicates an informative prior based
on the historical data only (See Supplementary Fig. A1,
Additional file 3, illustrating how the prior mixture distri-
bution based on the INT-0133 data changes with ω).

Joint prior distribution for control arm parameters and the
treatment effect
Assuming prior opinion on the control arm parameters
(θ) and the treatment effect (β) are independent, the
joint prior distribution can be written as

π θ; βjDH
C ;D

H
TE ; α0;ω

� �
∝L θjDH

C

� �α0 � π0 θð Þ
� ω� πH βjDH

TE

� �þ 1−ωð Þ � π0 βð Þ� �

The R code used to compute the joint posterior distri-
bution in the context of a Weibull model is available in
Additional file 4.

Simulation study
The main objective of the simulation study is to evaluate
how the operating characteristics of a Bayesian survival trial
might vary according to the weights (α0, ω) allocated to the
historical data, and to find optimal values of α0 and ω under
various scenarios representing different levels of commen-
surability between the historical and new trial data.

Generation of IPD on historical controls
Although observed historical data were available from
the OS2006 trial, we decided to work with two hypothet-
ical historical datasets which mimic SARC-OS survival

data but generating from two different survival distribu-
tions. Working with a simulated dataset gave us explicit
control over the distribution of the historical control
data, that is, the underlying survival model and model
parameters. This meant we could evaluate operating
characteristics of the Sarcome-13 design in: a) the ideal
situation where the new data are perfectly commensur-
ate with the historical data; and b) when there are con-
flicts of varying degrees between the distribution of the
historical and new control data. We thus generated two
hypothetical historical datasets which are similar to
SARC-OS data but differ in that one is sampled from a
Weibull model and another from a 3–parameter expo-
nential model. Due to random variation, different sets of
individual survival times drawn from the same model
can lead to very different estimated survival curves, es-
pecially when the sample size is small. With this in
mind, for each model type, we simulated 10,000 datasets,
setting the simulation model parameters equal to the
maximum likelihood estimates obtained from fitting the
observed SARC-OS data (See Supplementary Fig. A2,
Additional file 5) and the sample size identical to the
number of SARC-OS patients (n = 165). We then empir-
ically selected a replication with estimated survival func-
tion close to the underlying model (graphical similarity)
and with estimated parameters close to that of observed
historical data. This process resulted in two hypothetical
historical datasets, depicted in Supplementary Fig. A3,
Additional file 6, which served as individual historical
control data for the simulation study. We will refer to
these datasets as HCW (historical controls sampled from
a Weibull distribution) and HCP (historical controls
sampled from a piecewise exponential model).

Generation of new trial data
We simulated balanced trials with individual survival
times sampled from either a Weibull or a piecewise expo-
nential distribution. Parametric survival models were used
because they allow modelling the baseline hazard function
as a function of parameters estimated from both historical
and new individual data on the control arm.
Regarding the generation of survival data on the con-

trol arm, we considered various levels of commensur-
ability between the historical and new control data, both
in terms of the form of the underlying survival model
(Weibull versus 3-parameter exponential) and the values
of the model parameters.
In the first set of scenarios (S1-S24), we assumed no

conflict between the distributions of the historical and
new control data. In scenarios S1-S12 (S13-S24), histor-
ical data were taken to be dataset HCW (HCP), and new
control data were samples from a Weibull (piecewise ex-
ponential) distribution. In scenarios S1-S4 (S13-S16), we
set simulation model parameters, θw(θp), equal to the
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estimates obtained from fitting a Weibull (piecewise ex-
ponential) model, to the SARC-OS dataset (see green
curves in Fig. 1a and b). In scenarios S5-S8 (S17-S20),
simulation model parameters were set as the lower
(upper) limits of the 95% confidence intervals for θw(θp)
obtained from fitting the SARC-OS dataset (see the red
curves in Fig. 1a and b); this approach creates a ‘negative
prior-data conflict’, where the prognosis of the new con-
trols is worse than that of the historical controls. Con-
versely, in scenarios S9-S12 (S21-S24), model parameters
were taken to be the upper (lower) limits of the 95%
confidence intervals for θw(θp) (see blue curves in Fig.
1a and b), thus creating a ‘positive prior-data conflict’,
where the prognosis of the new controls is better than
that of the historical controls.
Simulation scenarios S25-S32 characterise cases where

there is a conflict between the historical and new control
data in terms of the underlying survival distribution.
Scenarios S25-S28 (S29-S32) take the historical control
data to be the hypothetical dataset generated from a
Weibull (piecewise exponential) model, whereas the new

control data are samples from a piecewise exponential
(Weibull) distribution (Figs. 1c-1d).

Regarding the treatment effect in the new trial, β, four
cases representing different degrees of commensurability
with the historical aggregate data (DH

TE) were considered: (i)
no treatment effect, i.e. β = ln(1) (‘null’ scenario; S1, S5, S9,
S13, S17, S21, S25 and S29), (ii) a treatment effect inferior
to the historical treatment effect derived from the pooled

INT-0133 estimates, i.e. β ¼ 0:5� cβH ¼ lnð0:886Þ (‘dis-
appointing effect’ scenario; S2, S6, S10, S14, S18, S22, S26
and S30), (iii) a treatment effect equal to the estimated his-

torical treatment effect, i.e. β ¼ cβH ¼ lnð0:786Þ (‘histor-
ical effect’ scenario; S3, S7, S11, S15, S19, S23, S27, and
S31), and (iv) a treatment effect equal to the target effect of
the Sarcome-13 trial which is superior to the historical
treatment effect, i.e. β = ln(0.55) (‘anticipated effect’ sce-
nario; S4, S8, S12, S16, S20, S24, S28, and S32).

In summary, we considered eight configurations of dif-
ferences between the survival distribution and model pa-
rameters which generated the historical and new control

Fig. 1 Event-free survival distribution of the historical and new control arm depending of their commensurability. On each panel, the black curve
represents the hypothetical historical control survival data (Kaplan-Meier estimates) simulated from a Weibull (left panel) and a piecewise
exponential (right panel) distribution. Panels a and b represent no conflict in terms of underlying survival distribution but possible non-
commensurability in terms of parameters (green, red and blue curves for commensurate, negative prior-data conflict and positive prior-data
conflict, respectively). Panels c and d represent non-commensurability in terms of survival distribution (green curve)
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data. Furthermore, we investigated four cases of discrep-
ancies between the historical and new treatment effect,
leading to a total of 32 simulation scenarios reflecting
different degrees of commensurability between the his-
torical information and new trial data (Table 1; see Sup-
plementary Figs. A4-A6, Additional file 7, for a graphical
representation). For each of the 32 scenarios, 5000 trials
were simulated with fixed sample size n = 105, as in the
planned Sarcome-13 trial, with 1:1 randomisation be-
tween trial arms and a uniform censoring rate of 5%.

Trial analysis
The data generated according to scenarios S1-S12 and
S13-S24 were analysed by fitting a Weibull or a
3-parameter exponential Bayesian model, respectively.
For scenarios S25-S32 in which the historical and new
control data are samples from different distributions, we
evaluated the impact of the analysis model by comparing
the results obtained when data were analysed using the
model consistent with the underlying distribution of the
historical control data or with the distribution used to
generate the new data.
Prior distributions for the Weibull model parameters, β0

and γ, were set as Normal(0, 10000) and Inverse
Gamma(0.0001, 0.0001), respectively. Concerning the
piecewise exponential model, we stipulated Normal(0,
10000) prior distributions for λ1, λ2, and λ3 (log scale).
These priors were used whenever a Weibull or a piecewise
model was used for the trial analysis. The impact of in-
corporating historical data into prior distributions was
evaluated by performing analyses under different configu-
rations of the weights α0 and ω: we considered pairs of
weights with α0 ∈ {0, 0.3, 0.6, 1} and ω ∈ {0, 0.1, 0.2, 0.4, 0.6,
0.8, 1}. Different values for the variance ðσ2

HÞ of the in-
formative component of the mixture prior for β were also
considered to represent situations where the amount of
historical information is larger, equivalent, or smaller than
the information that will be generated by the new trial for
scenarios S1 to S12. These values were σ2

H ¼ fs2; 5s2and 1
5s2g with s2 = 0.012 (variance of the historical effect esti-
mate), and thus equivalent to 329, 66, and 22 events, re-
spectively (expected event numbers calculated according
to Schoenfeld formula [35]). The main results correspond
to σ2H ¼ s2, equivalent to 329 events.
Bayesian survival models were fitted using Markov chain

Monte Carlo. We ran one chain, sampling using a
Metropolis-Hastings algorithm [37] for 20,000 iterations with
a ‘burn-in’ period of 5000 iterations, leaving 15,000 samples
for posterior inferences. Convergence to the stationary distri-
bution was assessed by Geweke’s diagnostic test.
We evaluated the frequentist operating characteristics of

the proposed Bayesian survival trial design assuming that
the following rule will be used to make final treatment

decisions: post-operative chemotherapy plus mifamurtide
will be deemed superior to post-chemotherapy alone if the
posterior probability of a HR lower than one exceeds 0.9.
The means of the posterior distributions of β was re-
corded for each simulated trial.

Metrics of the simulation study
For each simulation scenario, we estimated the bias of the
posterior estimate of the treatment effect as the difference
between the sample mean of the 5000 means of the pos-
terior distributions of β and the scenario-specific true
treatment effect. The empirical standard deviation (SD)
and the root mean square error (RMSE) of these estimates
were calculated as measures of precision and accuracy, re-
spectively. By counting the number of positive conclusions
among the simulated trials, we could compute the fre-
quentist type I error rate (in null scenarios, i.e. HR = 1)
and the frequentist power of a Bayesian decision (in all
other scenarios in which the new treatment is superior to
the contemporary performance of control, i.e. HR < 1).
All simulations and Bayesian analyses were performed

using a customised program written in R 3.3.1 [38] call-
ing the MCMCpack [39] and LearnBayespackages [40].
The R code to perform the Bayesian survival analysis
with a power prior and a mixture prior assuming a Wei-
bull distribution is provided in Additional file 4. The
code for the whole simulation study is available upon re-
quest from the authors.

Results
Impact of including historical aggregate treatment effect
only (α0 = 0)
The impact of including only historical aggregate infor-
mation on the treatment effect and excluding the histor-
ical controls can be determined by looking at results
when α0 = 0. Figures 2, 3 and 4 summarise the main
findings of simulation scenarios S1-S12 with respect to
type I and II errors, bias and RMSE of the Bayesian pos-
terior treatment effect estimate. In these scenarios, the
historical controls were generated by sampling from
Weibull distributions; prior-data conflicts arise either
due to differences between corresponding parameters of
these Weibull distributions or because the treatment ef-
fect underlying the new trial differs from the historical
estimate. Detailed results for scenarios S1-S12 are listed
in Supplementary Tables A1-A3, Additional file 8. Simi-
lar findings hold when data are samples from piecewise
exponential models; results for scenarios S13-S24 are
listed in Supplementary Tables A4-A6, Additional file 9.
Setting α0 = 0, the effect of increasing ω is illustrated by

the black curves in Figs. 2, 3 and 4. In scenarios S1-S4,
S5-S8 and S9-S12, the contemporary control data are sam-
ples from models with different baseline hazards: these
differences have no major impact, so that similar patterns
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of results are observed across null scenarios S1, S5 and S9.
The same applies to disappointing effect scenarios S2, S6,
and S10; historical effect scenarios S3, S7, and S11; and
anticipated effect scenarios S4, S8, and S12.

Incorporating historical information on the treatment
effect leads to important gains in power both when the
treatment effect in the new trial is less than the histor-
ical estimate (power increases from 20.8% for ω = 0 to

Table 1 Summary of the 32 scenarios considered for the simulation of the historical controls and new trial data

Scenario Survival distribution
of historical controlsa

Generation of new data

Survival distributionb Parameters

Control arm Treatment effectc

S1 Weibull Weibull Commensurate controls Null

S2 Disappointing

S3 Historical

S4 Anticipated

S5 Weibull Weibull Negative prior-data conflict Null

S6 Disappointing

S7 Historical

S8 Anticipated

S9 Weibull Weibull Positive prior-data conflict Null

S10 Disappointing

S11 Historical

S12 Anticipated

S13 Piecewise exponential Piecewise exponential Commensurate controls Null

S14 Disappointing

S15 Historical

S16 Anticipated

S17 Piecewise exponential Piecewise exponential Negative prior-data conflict Null

S18 Disappointing

S19 Historical

S20 Anticipated

S21 Piecewise exponential Piecewise exponential Positive prior-data conflict Null

S22 Disappointing

S23 Historical

S24 Anticipated

S25 Weibull Piecewise exponential Commensurate controls Null

S26 Disappointing

S27 Historical

S28 Anticipated

S29 Piecewise exponential Weibull Commensurate controls Null

S30 Disappointing

S31 Historical

S32 Anticipated
aSurvival distribution used to generate individual historical controls
bSurvival distribution used to generate individual patient data for the control arm of the new trial
cNull, Disappointing, historical and anticipated effects correspond to a hazard ratio of 1, 0.886, 0.786, and 0.55 in the new trial, respectively
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98.9% for ω = 1 in scenario S2) and when it exceeds the
historical estimate (power increases from 79.4% for ω = 0
to 100% for ω = 1 in scenario S4). In most scenarios, the
largest gains in power are made by increasing ω from 0
to 0.2 or 0.4; increasing ω further tends to result in
smaller gains. The increases in power seen under alter-
native effect scenarios must be balanced against the risk
that we will inflate the type I error rate if, in fact, the
new treatment is no better than standard treatment in
the new trial: in null scenario S1, the type I error rate in-
creases rapidly with ω, reaching 96.9% for ω = 1.
In the scenarios where the new treatment effect is

equal to the historical effect estimate (scenario S3), in-
corporating historical data on the treatment effect leads
to no bias in the treatment effect estimate. If the treat-
ment effect in the new trial is worse than indicated by
the historical data (S1-S2) the new effect is overesti-
mated, where the magnitude of the bias increases with
ω. Conversely, if the treatment effect in the new trial ex-
ceeds the historical estimate (S4), incorporating the his-
torical data causes to underestimate the new effect.

When ω = 0, the average empirical SD of the posterior
treatment effect estimate differs slightly across the simula-
tion scenarios due to the different number of events which
are expected to occur in the new trial in each case (fewer
events expected when there is a larger treatment effect or
the baseline hazards of death are smaller). Despite this, in
all scenarios, the average precision of the posterior esti-
mate increases as ω increases from 0 to 1. In contrast, the
manner in which the RMSE changes with ω depends on
the simulation scenario. For example, in the disappointing
and historical effect scenarios S2 and S3, the RMSE de-
creases rapidly as ω increases: the relative change in
RMSE is − 59% in S2 and − 86% in S3 as ω increases from
0 to 1. Smaller decreases in the RMSE are observed in null
scenario S1 (relative change of − 21% as ω increases from
0 to 1). Meanwhile, in anticipated effect scenario S4, small
changes in the RMSE are observed as ω varies between 0
and 1, but whereas a slight decrease results from increas-
ing ω from 0 to 0.2, consistent (small) increases are ob-
served as ω increases beyond 0.4, reflecting the trade-off
between increased precision and increased bias.

Fig. 2 Impact of α0 and ω on the operating characteristics for scenarios S1 to S4. A Weibull distribution is used for the historical and new data,
with σ2

H equivalent to 329 events. We assume that historical and new control arm are commensurate
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Choice of ω value for Sarcome-13 trial
When choosing how much weight to assign to the histor-
ical information for the treatment effect, we must consider
the impact of increasing ω on the bias, precision, and ac-
curacy of the treatment effect estimator, as well as the
power and type I error rate of the trial. Overall with this in
mind, we recommend setting ω = 0.1 when α0 = 0 if the
variance of the informative component of the mixture prior
for β is equivalent to 329 events. This choice of ω leads to a
type I error rate of 21.6% (S1). However, the scenario of no
treatment effect on EFS was deemed unlikely by the investi-
gators. This is why, in the setting of Sarcome-13 trial, we
accept this level of type I error. Setting ω = 0.1 enables sub-
stantial gains in power as ω increases from 0 to 0.1 (from
35.9 to 54.5% in scenario S3, for example) and accuracy
(RMSE decreases from 0.275 to 0.210 in scenario S3).

Different variances of the informative component of the
mixture prior
Different recommendations for ω may apply depending
upon the amount of historical information available for the

treatment effect. When σ2H ¼ s2; 5s2 or 15s2, we observe
similar trends in the properties of the treatment effect esti-
mator and trial operating characteristics as ω increases from
0 to 1, although the impact of changes in ω decreases as σ2H
increases. This is especially true for power, as illustrated in
Fig. 5 for scenarios S1 to S4 (details of the results for all sce-
narios are in Supplementary Tables A7-A12, Additional file
10). For any specific value of σ2H , the optimal choice of ω
must balance the competing aims of increasing power and
controlling bias. For example, suppose that the historical in-
formation for β is such that σ2

H ¼ 5s2 . Then in this case, if
the survival distribution is as specified in scenarios S2-S4, to
achieve the same gain in power as would be attained by set-
ting ω= 0.1 when σ2H ¼ s2, we must set ω= 1. However, the
risks associated with setting ω= 1 when σ2H ¼ 5s2 are higher
than those associated with setting ω= 0.1 when σ2

H ¼ s2 ,
since we see a larger bias in the treatment effect esti-
mator when the historical and new data are not com-
mensurate. For instance, in scenario S2, bias is
estimated at − 0.0275 when σ2H ¼ s2 and ω = 0.1 versus

Fig. 3 Impact of α0 and ω on the operating characteristics S5 to S8. A Weibull distribution is used for the historical and new data, with σ2H
equivalent to 329 events. We assume a negative prior-data conflict between historical and new control data
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− 0.0627 when σ2H ¼ 5s2 and ω = 1; in scenario S4, the
bias is + 0.0582 versus + 0.2014. When the amount of
historical information is reduced ðσ2H ¼ 15s2Þ , the
gains in power possible by incorporating historical
information for β are negligible, although bias still in-
creases with increasing ω. This contrasts with the fact
that gains in precision are still possible by increasing
ω even for large values of the variance σ2

H .

Impact of including historical control data only (ω = 0)
We begin by summarising results for scenarios S1-S12
(assuming historical controls and the new trial data are
samples from a Weibull model) for ω = 0 and various
choices of α0, which can be read off as the y-intercepts
of the curves shown in Figs. 2-4 and from Supplemen-
tary Tables A1-A3, Additional file 8.

Historical and new control data are commensurate
Fixing ω = 0, we only incorporate historical control data
into the new trial analysis, which leads to a limited

increase in power when the historical and contemporary
controls are commensurate (S1-S4, Fig. 2). The magnitude
of the gains in power possible by increasing α0 from 0 to 1
depends on the true treatment effect, with power increas-
ing from 20.8 to 23.3% in S2; from 35.9 to 44.8% in S3;
and from 79.4 to 92.9% in S4. Power is increased by shift-
ing α0 from 0 to 0.3, with limited gains possible for higher
α0 values. Increasing α0 is also associated with a slightly
improved control of the type I error rate; for example, the
false positive error rate decreases from 10 to 8.7% as α0
changes from 0 to 1 in S1. The main benefit of incorporat-
ing historical control data is a gain in precision and accur-
acy of the treatment effect estimate (RMSE decreases
from 0.275 to 0.212 in S3). As we incur a slight unex-
pected increase in bias when increasing α0, we extended
the simulations presented here to consider the case that
the new trial recruits 2000 patients (data not shown). In
these additional scenarios, we observed no increase in bias
when increasing α0, which suggests that the small bias ob-
served here when the new trial recruits only 105 patients
is due to the small sample size.

Fig. 4 Impact of α0 and ω on the operating characteristics for scenarios S9 to S12. A Weibull distribution is used for the historical and new data,
with σ2H equivalent to 329 events. We assume a positive prior-data conflict between historical and new control data
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Negative prior-data conflict between historical and new
control data
Focusing now on scenarios where survival for new con-
trols is worse than for historical controls (S5-S8, Fig. 3),
we observe a reduction in the probability of a positive
conclusion in all scenarios, leading to an improved con-
trol of the type I error rate (error rate is 10.4 and 1.4%
when α0= 0 and 1, respectively, in S5) but also a loss in
power in alternative effect scenarios. As we allocate
more weight to the historical information, power de-
creases from 22.4 to 5.6% (− 75%), from 38.2 to 16.8%
(− 56%), and from 84.9 to 81.1% (− 4.5%), in the disap-
pointing (S6), historical (S7) and anticipated (S8) treat-
ment effect scenarios, respectively. These losses in
power are due to the fact that the treatment effect is
underestimated, and the magnitude of the bias increases
with α0. This can be explained by noting that increasing
α0 amounts to augmenting the contemporary control
data with an increasing number of pseudo-observations
on control patients who have an improved prognosis

which reduces the difference between the control and
experimental arm in the analysis of the new trial. The in-
crease in precision seen across scenarios S5-S8 is similar
to the increase seen in scenarios S1-S4 when historical
and contemporary controls are commensurate. The in-
crease in bias and precision seen when increasing α0 re-
sults in a minor improvement in RMSE for α0 = 0.3 that
disappears for higher α0. Thus, in such settings, there is
minor advantage to incorporating historical control data
in terms of RMSE and we observe a detrimental effect in
terms of power.

Positive prior-data conflict between historical and new
control data
Similar results in terms of precision are observed for
scenarios S9-S12, where survival of new controls is
better than historical data. The type I error rate in-
creases with increasing α0 from 10.2 to 19.4% (Fig. 4).
Power also increases as we incorporate the historical
control data. In scenarios S9-S12, we overestimate the

Fig. 5 Impact of ω, for α0 = 0, on the operating characteristics for scenarios S1 to S4. A Weibull distribution is used for the historical and new
data. We assume here commensurability between historical and new control arm, with various values of σ2H equivalent to 329, 66 and 22 events,
The horizontal line represents the metric for α0 = 0 and ω = 0.1
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treatment effect when incorporating the historical control
data: augmenting the contemporary controls with patient
data on controls who have a worse prognosis increases the
estimate of the treatment difference.

Results when considering a piecewise exponential
distribution
Overall, similar results are observed when historical and
new control data follow a piecewise exponential survival
distribution with different degrees of commensurability
between the baseline survival of the historical and new
controls (S13-S24) (Supplementary Tables A4-A6, Add-
itional file 9). In small samples, the bias in the treatment
effect estimate seen when the historical and new con-
trols are commensurate is more marked when control
outcomes are samples from a piecewise exponential
model. However, this bias disappears for larger new trial
sample sizes (data not shown).

Impact of including both individual historical control data
and aggregate historical information on the treatment
effect
We first suppose that the historical controls and new
trial data follow a Weibull distribution, and that the vari-
ance of the informative component of the mixture prior
for the treatment effect is equivalent to what would be
obtained if we observed 329 events.
In this situation, assuming we incorporate both the

historical controls and existing information on the
treatment effect into the new trial analysis by setting
ω > 0 and α0 > 0, we find that changes in the probability
of a successful trial outcome, and the empirical SD and
RMSE of the posterior treatment effect estimate appear
to be largely driven by changes in ω rather than α0. The
patterns of changes in operating characteristics seen as
ω increases are consistent across different values of α0.
In many scenarios, the impact of α0 on different per-
formance metrics is smaller under higher values of ω. It
is explained by the fact that ω is assigned to the infor-
mation on the treatment effect. In scenario S3, when all
historical data (historical controls and treatment effect
prior) are commensurate with the new trial data, power
is respectively 35.9% when α0 = 0 and ω = 0; 44.8%
when α0 = 1 and ω = 0; and 99.7% when ω = 1, inde-
pendent of the value of α0. In terms of type I error, we
observed an overall inflation with increasing ω, what-
ever the level of commensurability between historical
and new control, and the values of α0. However, we
note a positive impact of increasing α0 in negative-prior
conflict (S5): for instance, for ω = 1, type I error varied
from 95% for α0 = 0 to 73% for α0 = 1. However, the
type I error rapidly increases when increasing ω coun-
terbalancing the small gain obtained with the increase
of α0.

Choice of weighting parameters for the Sarcome-13 trial
Bayesian analysis
Using the parameter configuration α0 = 0 and ω = 0 as a
benchmark, we find that incorporating historical data by
setting α0 = 0.3 and ω = 0.1 is an acceptable trade-off. It
increases power from 20.8 to 39.5% in the disappointing
effect scenario (S2); from 35.9 to 61.3% in the historical
effect scenario (S3); and from 79.4 to 95.7% in the antici-
pated effect scenario (S4). The configuration α0 = 0.3
and ω = 0.1 also leads to an increased type I error rate at
20.4% (S1). However, as already written, the scenario of
no effect of mifamurtide on EFS was deemed unlikely by
the investigators. This is why in the setting of
Sarcome-13 trial, we accepted this level of type I error.
The Supplementary Fig. A7, Additional file 11 presents
the posterior distribution of the log-hazard ratio depend-
ing on the values of the weighting parameters.

Results when considering a piecewise exponential
distribution
Similar conclusions hold when historical and new trial
follow a piecewise exponential distribution and are ana-
lysed using a Bayesian piecewise exponential model
(Supplementary Tables A4-A6, Additional file 9).

Impact of including individual historical data in conflict
with new control data in terms of survival distributions
Table 2 summarises the impact of incorporating historical
control data only (fixing ω = 0 and varying α0) when the
historical control data follow a Weibull survival distribu-
tion and the new trial data follow a piecewise exponential
distribution (Scenario S27 with HR = 0.786). Simulated
data in this scenario were analysed using either a Weibull
model (W/P/W) or a piecewise exponential model (W/P/
P). Overall, the choice of the analysis model had a limited
impact. This may be explained by the fact that these his-
torical datasets were, by construction, relatively similar
even if generated from different survival distributions.
However, in scenario S27 there is a slightly smaller bias
for the treatment effect if the analysis model is consistent
with the distribution of the new trial data. Compared with
scenario S3 where there is no conflict between the survival
distributions of the historical and new data, and where
data are analysed with a Weibull model (W/W/W),
incorporating historical data when there is a conflict in
survival distribution leads to increases in bias and losses
in accuracy. Similar results were observed for scenarios
with different underlying HRs (detailed in Supplementary
Tables A13-A14, Additional file 12).
When historical control data follow a piecewise expo-

nential distribution and new data follow a Weibull sur-
vival distribution, both types of model (Weibull and
piecewise exponential) lead to very similar results (see

Brard et al. BMC Medical Research Methodology           (2019) 19:85 Page 12 of 17



Supplementary Tables A15 for P/W/P and A16 for P/W/
W, Additional file 12).

Discussion
This paper proposes using a power prior (with fixed
power parameter) and a mixture prior to incorporate
simultaneously individual historical controls and aggre-
gate treatment effect estimates into the Bayesian analysis
of a new survival trial. Trial operating characteristics
under this approach were evaluated through simulations.
Properties varied according to the weights assigned to
each source of historical information, the variance of the
informative and vague component of the mixture prior
and the level of commensurability between the historical
and new data. Indeed, in one hand, a high inflation of
type I error is observed which challenges the benefit of
using historical data, but this type I error is computed
for the scenario of no treatment effect deemed unlikely,
and with, however, a gain in terms of precision. In the
other hand, an increase in power is observed in the
other scenarios, even if a more stringent decision thresh-
old is set, such as P(HR < 1) > 95%, to control the type I
error rate at 10% (data available on request). The incorp-
oration of historical individual control data had a very
little impact in terms of power. Incorporate these data
could be a questionable choice given the potential risk
to bias results. However, these data enable us to gain in
precision and thus, as we are confident that these data
will be commensurate with Sarcome-13 control data, we
decided to incorporate them. We identified empirically
values for α0 and ω which is a reasonable trade-off be-
tween power, bias and accuracy for small studies with a
set-up similar to the Sarcome-13 trial. In addition to the
evaluation of the weight allocated to the historical data,
we also evaluated the impact of the model uncertainty
i.e. when individual historical control data used to spe-
cify the analysis do not fit well the new controls (shape
of the modelling). In our simulations, whatever the sce-
narios, choosing a piecewise exponential compared to a
Weibull model for the Bayesian analysis of the new trial
did not provide any advantage in terms of bias, precision

or power. These results may be explained by the similar-
ity of the distribution of the hypothetical historical data
set compared to that of the generated datasets for the
new trial in the setting of Sarcome-13. Incorporating
historical control data requires survival modelling; the
definition of survival modelling type may be challenging
due to the uncertainty that often surrounds the shape of
the survival distribution in rare diseases.
All these results were obtained from a Bayesian ap-

proach using two different priors (power prior and mix-
ture prior) for incorporating two different types of
historical data. We could use similar priors for both types
of data but our pragmatic approach has two main advan-
tages: a) applying a mixture prior to the aggregate estimate
allows to have a robustifying component which allows to
better respond to prior-data conflict, b) applying a power
prior (with fixed power parameter) to individual patient
data is less complex, because a mixture prior would re-
quire asymptotic assumption about the form of joint pos-
terior distribution of the control survival model
parameters. As there will often be several parameters
characterising survival on control, the power prior seems
a more parsimonious way of incorporating these data.
The impact of incorporating historical data of the same

type into the analysis of a new trial is not new and has
previously been evaluated for the cases of binary [21, 23,
24, 41, 42] and survival outcomes [43], with similar find-
ings to those presented here. Focusing on binary end-
points, Cuffe [41] highlights the risks to power and
unbiased estimation of response rates of incorporating
historical controls if these are not commensurate with
new data which is in agreement with our work. Further-
more, Cuffe points out that if we want to ensure control
of the type I error rate accounting for possible prior-data
conflicts, we may not increase power and even reduce it.
More recently, Li et al. [23] present an empirical
meta-analytic predictive prior to better adjust the weight
of historical data according to the degree of prior-data
conflict. They compare their method to the meta-analytic
predictive prior and its robust version presented by
Schmidli et al. [21]and show that their method better

Table 2 Impact of individual historical data in conflict with new data in terms of survival distribution for S27a

W/P/W W/P/P W/W/W

α0 Bias SD RMSE Power Bias SD RMSE Power Bias SD RMSE Power

0 −0.0142 0.292 0.298 0.358 −0.0087 0.287 0.292 0.345 0.0022 0.275 0.275 0.359

0.3 −0.0541 0.258 0.255 0.447 −0.0366 0.256 0.248 0.416 −0.0070 0.245 0.231 0.396

0.6 −0.0736 0.245 0.248 0.505 −0.0544 0.243 0.240 0.464 −0.0111 0.233 0.218 0.418

1 −0.0883 0.235 0.247 0.554 −0.0702 0.235 0.239 0.518 −0.0141 0.223 0.212 0.448
aResults correspond to scenario S27 defined with Weibull survival distribution for the historical control data and piecewise exponential distribution for the new
data with HR = 0.786 and analysed with ω = 0 either with a Weibull model (W/P/W) or with a piecewise exponential model (W/P/P). These results are compared to
scenario S3, given as a benchmark and defined by commensurate historical and new control data which follow a Weibull distribution, and are analysed with a
Weibull model (W/W/W)
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control the type I error rate in case of heterogeneity be-
tween historical and new study. They also highlight the
difficulties of determining the weight parameter ω in the
robust meta-analytic predictive prior as this would be
based on the investigators confidence in the relevance of
the historical data. When only a single historical study is
available, Gravestock et al. [24] propose an empirical
Bayes approach to power prior construction in order to
adaptively respond to prior-data conflict. This approach
performs well compared to a full Bayes approach or a
fixed parameter approach where the choice of the weight-
ing parameter α0 is not straightforward. In the context of
censored endpoints, Van Rosmalen et al. [43] compared
different methods for including individual patient data
from the control arms of several historical trials. These au-
thors showed that accounting for between-trial heterogen-
eity is necessary to take full advantage of the historical
data. More generally, Neuenschwander et al. [18], Gsteiger
et al. [44], Schmidli et al. [21] adopt a meta-analytic model
to describe between-trial differences in a key parameter; a
prior distribution for the parameter in a future trial is de-
rived assuming parameters in the historical and future
studies are exchangeable. As stated in the background sec-
tion, given the limited amount of historical data likely to
be available when planning a rare disease trial, we do not
attempt to model between-trial differences in key parame-
ters. Instead, we propose accounting for potential differ-
ences, that is, prior-data conflicts, by discounting the
historical control data (using a power prior with fixed
power parameter) and adopting a robust mixture prior for
the treatment effect. We speculate that using a power
prior with a dynamic, rather than a fixed power parameter
would imply improved type I error rate control as the ana-
lysis would respond quicker to a prior-data conflict arising
because the new trial data are less promising than the
treatment effect prior. However, a dynamic version of the
power prior may lead to greater penalisation of the
historical control data in the setting of small trials
when larger differences between the historical and
new controls can be observed due to random vari-
ation, rather than true differences between
study-specific parameters [45, 46]. Furthermore, it
may also lead to reduced borrowing when new and
historical datasets are commensurate [19]. The evalu-
ation of the impact of fixed versus adaptive prior in
the setting of rare diseases with a high level of uncer-
tainty is worth of further investigations.
Regarding the mixture prior for the log hazard ratio,

selecting suitable values for ω and the variance of the
vague mixture component is not straightforward, and
both will impact trial operating characteristics. All simula-
tions in this paper were performed setting the vague com-
ponent to be a normal distribution with mean zero and
variance 10. Mutsvari et al. [22]note the importance of an

appropriate choice of variance for the vague component
to ensure adequate discounting of the historical informa-
tion in the event of a prior-data conflict. If this variance is
excessively large, the mixture prior will have very heavy
tails, placing prior mass on treatment effects with im-
plausibly large absolute values. This leads to little
down-weighting of the historical data, even if there is a
clear prior-data conflict. This is why we chose, after some
simulations, a variance of 10 that seemed to be a good
trade-off. In practice, we would recommend statisticians
planning to use a mixture prior for a new Bayesian clinical
trial should run simulations to calibrate the variance of
the vague prior component and its weight, (1 −ω), to find
values producing favourable trial operating characteristics.
Even though we attempted to make the simulation

study wider in considering a various set of scenarios,
the considered scenarios closely mimic the Sarcome-13
trial; consequently, additional simulations would be re-
quired to improve generalisability to all rare disease tri-
als measuring time-to-event outcomes. As such, it
would be worth evaluating the impact of the type of
modelling considering historical data with more differ-
ent shapes than those we considered in our hypothet-
ical historical data. We also did not evaluate the impact
on trial operating characteristics of different ratios of
the number of historical and new controls. Since the
impact of including individual historical control data is
small even when this ratio is close to 3 (as in the set-
tings considered in this paper i.e. 52 patients in the
new trial versus 165 in the historical data), we can ex-
trapolate to conclude that varying this ratio would have
little impact on trial properties. Furthermore, we did
not explore how changing the randomisation ratio in
the new trial to recruit more patients to the experimen-
tal arm would impact performance. However, in the
particular setting of the Sarcome-13 trial, investigators
preferred to keep a 1:1 randomisation ratio which is
generally what is decided in rare disease trials because
high quality randomised data on the control is often
scarce. We also only considered Weibull and
three-parameter exponential models for analysing the
new survival trial; other flexible survival models [47]
were not investigated because we judged that they
would to be too complex to apply to trials with small
sample sizes. We do not consider our focus on Weibull
and piecewise exponential models to be unnecessarily
restrictive since they can accommodate a large variety
of survival patterns. Even though we did not assess fun-
damentally different survival models with various values
for baseline parameters, this was quite unlikely to occur
from a clinical point of view. It should also be noted
that while this simulation study was based on the
Sarcome-13 trial, we considered a range of simulation
scenarios to allow our conclusions to be informative for
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statisticians who are considering adopting a Bayesian
approach for their own rare disease trial. We chose to
use frequentist criteria (power, type I error) to express
results. It is possible that this not fully reflect all the
interest of the Bayesian approach. However, this choice
was based on FDA recommendations on the presenta-
tion of Bayesian results in its guideline for the use of
Bayesian statistics in medical device clinical trials [13].
Some other criteria such as the probability of success
would maybe allow to better takes advantage of the Bayes-
ian approach. It seems important to us that a trialist who
wants to launch a new Bayesian study, using available his-
torical data, evaluates the benefit-risk balance of combin-
ing these data with the current trial. Even if we are
exposed to bias and increased type I error, using historical
data is not only useful to gain in power but it also allows
us to potentially gain a lot in precision and accuracy. This
benefit-risk balance depends on the commensurability be-
tween historical and new data which can be evaluated
both (i) from the beliefs of the trialist or from experts’
opinion, and (ii) from a simple statistical test comparing
historical and new data. However, it is necessary to per-
form a preliminary large simulation study including vari-
ous scenarios, which enables the trialist to evaluate the
risks and possible benefits of the approach incorporating
historical data, and to calibrate the weigh assigned to these
data. When designing a trial, one must consider the time
and resources needed to run such simulations. For a given
scenario, running 5000 simulated trials for each of 28 con-
figurations of the pair (α0, ω) given one scenario and ana-
lysing them by a Bayesian Weibull regression model took
two hours on a server with 125 cores using R parallel pro-
gramming (Parallel R package [48]).
To our knowledge, no previous published work has

investigated the impact of incorporating both individual
historical control data and aggregate treatment effect
information when designing a randomised survival trial
using a Weibull or a piecewise exponential survival re-
gression model. One avenue for further research is to
extend this approach to multiple sources of historical
data. This will require taking into account the hetero-
geneity between studies. Ibrahim et al. [49] proposed a
meta-analytic framework for incorporating aggregate
(trial-level) historical data from the control or experi-
mental or both into the analysis of a new survival trial
when outcomes follow an exponential regression
model. We could extend the method proposed by Ibra-
him et al. to other survival models like Weibull or
piecewise exponential models. Some authors proposed
a “meta-experiment” approach based on a prospective
meta-analysis design compared to a classical single ran-
domised trial for challenging the sample size calcula-
tion [50]. However, this approach could be challenging
in the context of rare diseases.

Conclusions
In conclusion, the gains in power and accuracy possible
by incorporating historical information commensurate
with the new trial data has to be balanced against the
risk of biased estimates and a possible loss in power if
data are not commensurate. The weights allocated to
the historical data have to be carefully chosen based on
this trade-off.
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parameter exponential and Royston & Parmar flexible models) of the
event-free survival curves for the subgroup of OS2006 patients satisfying
the Sarcome-13 eligibility criteria (n = 165, 73 events). (PDF 113 kb)

Additional file 6: Figure A3. Historical datasets considered in the
simulation study. Observed Kaplan-Meier curves of SARC-OS patients, that
is, the subgroup of OS2006 patients satisfying the Sarcome-13 trial eligi-
bility criteria, and Kaplan-Meier curves of the two hypothetical historical
datasets: one simulated from a Weibull distribution and one from a piece-
wise exponential distribution. (PDF 115 kb)

Additional file 7: Figure A4-A6. Graphical representation of scenarios
S1 to S32. Graphical representations of scenarios S1 to S12 (Fig. A4)
where there is no conflict in terms of survival distribution and where a
Weibull distribution is used for generating the historical control and new
trial data; scenarios S13 to S24 (Fig. A5) where there is no conflict in
terms of survival distribution and where a piecewise exponential survival
distribution is used to generate the historical control and new trial data;
scenarios S25 to S32 (Fig. A6) where there is a conflict in terms of survival
distribution between the historical and new trial data. (PDF 655 kb)

Additional file 8: Tables A1-A3. Impact of α0 and ω on the operating
characteristics for scenarios S1 to S12. These tables describe the impact
of α0 and ω on the operating characteristics for scenarios S1 to S4 (Table
A1), when historical and new control arm are commensurate, for
scenarios S5 to S8 (Table A2), when there is a negative prior-data conflict,
and for scenarios S9 to S12 (Table A3), when there is a positive prior-data
conflict. A Weibull distribution is used to generate and analyse historical
and new data, and σ2H is equivalent to 329 events. (PDF 483 kb)

Additional file 9: Tables A4-A6. Impact of α0 and ω on the operating
characteristics for scenarios S13 to S24. These tables describe the impact
of α0 and ω on the operating characteristics for scenarios S13 to S16
(Table A4), when historical and new control arm are commensurate, for
scenarios S17 to S20 (Table A5), when there is a negative prior-data con-
flict, and for scenarios S21 to S24 (Table A6), when there is a positive
prior-data conflict. A piecewise exponential distribution with 3 pieces is
used to generate and analyse historical and new data, and σ2H is equiva-
lent to 329 events. (PDF 483 kb)

Additional file 10: Tables A7-A12. Impact of α0 and ω on the
operating characteristics for scenarios S1 to S12 when σ2H is equivalent to
66 or 22 events. These tables describe the impact of α0 and ω on the
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operating characteristics for scenarios S1 to S4 (Tables A7 and A10), when
historical and new control arm are commensurate, for scenarios S5 to S8
(Tables A8 and A11), when there is a negative prior-data conflict, and for
scenarios S9 to S12 (Tables A9 and A12), when there is a positive prior-
data conflict. A Weibull distribution is used to generate and analyse his-
torical and new data, and σ2H is equivalent to 66 (Tables A7-A9) or 22 (Ta-
bles A10-A12) events. (PDF 689 kb)

Additional file 11: Figure A7. Posterior distribution of the log-hazard
ratio depending on the values of the weighting parameters. This figure
represents no incorporation of historical data (solid black curve),
weighted incorporation of historical data (dashed red curve), and full in-
corporation of historical data (dot dashed blue curve). (PDF 117 kb)

Additional file 12: Tables A13-A16. Impact of α0 and ω on the
operating characteristics for scenarios S25 to S32 when there is a conflict in
terms of the underlying survival distribution between historical and new
data. These tables describe the impact of α0 and ω on the operating
characteristics in case of a conflict in terms of survival distribution between
historical and new data. Tables A13 and A14 describe results for scenarios
S25 to S28 when the historical data follow a Weibull distribution, the new
data follow a piecewise exponential distribution, and data are analysed
using either a Bayesian Weibull model (Table A13) or a Bayesian piecewise
exponential model (Table A14). Tables A15 and A16 describe results for
scenarios S29 to S32 when the historical data follow a piecewise
exponential distribution, the new data follow a Weibull distribution, and
data are analysed using either a Bayesian piecewise exponential model
(Table A15) or a Bayesian Weibull model (Table A16). (PDF 554 kb)
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