A. S. Jannot, E. Zapletal, P. Avillach, M. F. Mamzer, A. Burgun et al., The Georges Pompidou University Hospital Clinical Data Warehouse: a 8-years follow-up experience, Int J Med Inform, vol.102, pp.21-29, 2017.

C. Shivade, P. Raghavan, E. Fosler-lussier, P. J. Embi, N. Elhadad et al., A review of approaches to identifying patient phenotype cohorts using electronic health records, J Am Med Inform Assoc, vol.21, pp.221-251, 2014.

M. Conway, R. L. Berg, D. Carrell, J. C. Denny, A. N. Kho et al., Analyzing the heterogeneity and complexity of electronic health record oriented phenotyping algorithms, AMIA Annu Symp Proc, vol.2011, pp.274-83, 2011.

E. I. Benchimol, A. Guttmann, D. R. Mack, G. C. Nguyen, J. K. Marshall et al., Validation of international algorithms to identify adults with inflammatory bowel disease in health administrative data from Ontario, Canada, J Clin Epidemiol, vol.67, pp.887-96, 2014.

V. Bertaud, J. Lasbleiz, F. Mougin, A. Burgun, and R. Duvauferrier, A unified representation of findings in clinical radiology using the UMLS and DICOM, Int J Med Inf, vol.77, pp.621-630, 2008.

M. Fiszman, W. W. Chapman, D. Aronsky, R. S. Evans, and P. J. Haug, Automatic detection of acute bacterial pneumonia from chest X-ray reports, J Am Med Inform Assoc, vol.7, pp.593-604, 2000.

U. Hahn, M. Romacker, and S. Schulz, MEDSYNDIKATE-a natural language system for the extraction of medical information from findings reports, Int J Med Inf, vol.67, pp.63-74, 2002.

C. Friedman, L. Shagina, Y. Lussier, and G. Hripcsak, Automated encoding of clinical documents based on natural language processing, J Am Med Inform Assoc, vol.11, pp.392-402, 2004.

S. Bakken, S. Hyun, C. Friedman, and S. B. Johnson, ISO reference terminology models for nursing: applicability for natural language processing of nursing narratives, Int J Med Inf, vol.74, pp.615-637, 2005.

L. Li, H. S. Chase, C. O. Patel, C. Friedman, and C. Weng, Comparing ICD9-encoded diagnoses and NLP-processed discharge summaries for clinical trials prescreening: a case study, AMIA Annu Symp Proc, pp.404-412, 2008.

H. Xu, Z. Fu, A. Shah, Y. Chen, N. B. Peterson et al., Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases, AMIA Annu Symp Proc, vol.2011, pp.1564-72, 2011.

W. Wei, P. L. Teixeira, H. Mo, R. M. Cronin, J. L. Warner et al., Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance, J Am Med Inform Assoc, vol.23, pp.20-27, 2016.

J. C. Kirby, P. Speltz, L. V. Rasmussen, M. Basford, O. Gottesman et al., PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability, J Am Med Inform Assoc, vol.23, issue.6, p.202, 2016.

J. Cosnes, C. Cellier, S. Viola, J. Colombel, L. Michaud et al., Incidence of autoimmune diseases in celiac disease: protective effect of the glutenfree diet, Clin Gastroenterol Hepatol, vol.6, pp.753-761, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00815920

T. Iqbal, M. A. Zaidi, G. A. Wells, and J. Karsh, Celiac disease arthropathy and autoimmunity study, J Gastroenterol Hepatol, vol.28, pp.99-105, 2013.

P. Collin, J. Salmi, O. Hällström, T. Reunala, and A. Pasternack, Autoimmune thyroid disorders and coeliac disease, Eur J Endocrinol Eur Fed Endocr Soc, vol.130, pp.137-177, 1994.

A. Diamanti, F. Ferretti, R. Guglielmi, F. Panetta, F. Colistro et al., Thyroid autoimmunity in children with coeliac disease: a prospective survey, Arch Dis Child, vol.96, pp.1038-1079, 2011.

M. Van-der-pals, A. Ivarsson, F. Norström, L. Högberg, J. Svensson et al., Prevalence of thyroid autoimmunity in children with celiac disease compared to healthy 12-year olds, Autoimmune Dis, p.417356, 2014.

C. Sategna-guidetti, U. Volta, C. Ciacci, P. Usai, A. Carlino et al., Prevalence of thyroid disorders in untreated adult celiac disease patients and effect of gluten withdrawal: an Italian multicenter study, Am J Gastroenterol, vol.96, pp.751-758, 2001.

C. E. Counsell, A. Taha, and W. S. Ruddell, Coeliac disease and autoimmune thyroid disease, Gut, vol.35, pp.844-850, 1994.

E. Lubrano, C. Ciacci, P. R. Ames, G. Mazzacca, P. Oriente et al., The arthritis of coeliac disease: prevalence and pattern in 200 adult patients, Br J Rheumatol, vol.35, pp.1314-1322, 1996.

U. Volta, G. Caio, V. Stanghellini, D. Giorgio, and R. , The changing clinical profile of celiac disease: a 15-year experience (1998-2012) in an Italian referral center, BMC Gastroenterol, vol.14, p.194, 2014.

K. Størdal, I. J. Bakken, P. Surén, and L. C. Stene, Epidemiology of Coeliac Disease and Comorbidity in Norwegian Children, J. Pediatr Gastroenterol Nutr, vol.57, pp.467-71, 2013.

M. C. Bybrant, E. Örtqvist, S. Lantz, and L. Grahnquist, High prevalence of celiac disease in Swedish children and adolescents with type 1 diabetes and the relation to the Swedish epidemic of celiac disease: a cohort study, Scand J Gastroenterol, vol.49, pp.52-60, 2014.

E. Zapletal, N. Rodon, N. Grabar, and P. Degoulet, Methodology of integration of a clinical data warehouse with a clinical information system: the HEGP case, Stud Health Technol Inform, vol.160, pp.193-200, 2010.

A. Al-hussaini, N. Sulaiman, M. Al-zahrani, and A. Alenizi, El Haj I. High prevalence of celiac disease among Saudi children with type 1 diabetes: a prospective cross-sectional study, BMC Gastroenterol, vol.12, p.180, 2012.

G. H. Gonzalez, T. Tahsin, B. C. Goodale, A. C. Greene, and C. S. Greene, Recent advances and emerging applications in text and data mining for biomedical discovery, Brief Bioinform, vol.17, pp.33-42, 2016.

B. Abdelali, T. Caruba, E. Zapletal, B. Sabatier, P. Durieux et al., A Clinical Data Warehouse-Based Process for Refining Medication Orders Alerts, J Am Med Informat Assoc: JAMIA, vol.19, issue.5, pp.782-85, 2012.

J. Escudié, A. Jannot, E. Zapletal, S. Cohen, G. Malamut et al., Reviewing 741 patients records in two hours with FASTVISU, AMIA Annu Symp Proc, vol.2015, pp.553-562, 2015.

M. Sperrin, S. Thew, J. Weatherall, W. Dixon, and I. Buchan, Quantifying the longitudinal value of healthcare record collections for pharmacoepidemiology, AMIA Annu Symp Proc, pp.1318-1343, 2011.

P. Casez, J. Labarère, M. Sevestre, M. Haddouche, X. Courtois et al., ICD-10 hospital discharge diagnosis codes were sensitive for identifying pulmonary embolism but not deep vein thrombosis, J Clin Epidemiol, vol.63, pp.790-797, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00453690

E. I. Benchimol, L. Smeeth, A. Guttmann, K. Harron, D. Moher et al., The REporting of studies Conducted using Observational Routinelycollected health Data (RECORD) Statement, PLoS Med, vol.12, 2015.

G. W. Hruby, K. Matsoukas, J. J. Cimino, and C. Weng, Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics, J Biomed Inform, vol.60, pp.376-84, 2016.

J. Adler-milstein, C. M. Desroches, P. Kralovec, G. Foster, C. Worzala et al., Electronic health record adoption in US hospitals: progress continues, but challenges persist, Health Aff Proj Hope, vol.34, pp.2174-80, 2015.