T. F. Vandamme, Use of rodents as models of human diseases, J. Pharm. Bioallied Sci, vol.6, issue.1, p.2, 2014.

I. W. Mak, N. Evaniew, and M. Ghert, Lost in translation: animal models and clinical trials in cancer treatment, Am. J. Transl. Res, vol.6, issue.2, p.114, 2014.

G. Francia and R. S. Kerbel, Raising the bar for cancer therapy models, Nat. Biotechnol, vol.28, issue.6, pp.561-562, 2010.

M. E. Katt, A. L. Placone, A. D. Wong, Z. S. Xu, and P. C. Searson, In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform, Front. Bioeng. Biotechnol, vol.4, 2016.

D. Huh, G. A. Hamilton, and D. E. Ingber, From 3D cell culture to organs-on-chips, Trends Cell Biol, vol.21, issue.12, pp.745-754, 2011.

X. Xu, M. C. Farach-carson, and X. Jia, Three-dimensional in vitro tumor models for cancer research and drug evaluation, Biotechnol. Adv, vol.32, issue.7, pp.1256-1268, 2014.

Y. S. Zhang, Y. Zhang, and W. Zhang, Cancer-on-a-chip systems at the frontier of nanomedicine, Drug Discov. Today, vol.22, issue.9, pp.1392-1399, 2017.

S. S. Verbridge, N. W. Choi, Y. Zheng, D. J. Brooks, A. D. Stroock et al., Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis, Tissue Eng. Part A, vol.16, issue.7, pp.2133-2141, 2010.

R. Z. Lin and H. Y. Chang, Recent advances in three-dimensional multicellular spheroid culture for biomedical research, Biotechnol. J, vol.3, issue.9, pp.1172-1184, 2008.

F. Perche and V. P. Torchilin, Cancer cell spheroids as a model to evaluate chemotherapy protocols, Cancer Biol. Ther, vol.13, issue.12, pp.1205-1213, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02130815

I. K. Zervantonakis, S. K. Hughes-alford, J. L. Charest, J. S. Condeelis, F. B. Gertler et al., Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.13515-13520, 2012.

K. Ziolkowska, R. Kwapiszewski, and Z. Brzozka, Microfluidic devices as tools for mimicking the in vivo environment, New J. Chem, vol.35, issue.5, pp.979-990, 2011.

X. J. Li, A. V. Valadez, P. Zuo, and Z. Nie, Microfluidic 3D Cell Culture: Potential Application for Tissue-based Bioassays, 2012.

B. Zhang and M. Radisic, Organ-on-a-Chip devices advance to market, Lab Chip, vol.17, pp.2395-2420, 2017.

D. G. Strauss and K. Blinova, Clinical trials in a dish, Trends Pharmacol. Sci, vol.38, issue.1, pp.4-7, 2017.

G. M. Walker, H. C. Zeringue, and D. J. Beebe, Microenvironment design considerations for cellular scale studies, Lab Chip, vol.4, issue.2, pp.91-97, 2004.

S. Breslin and L. O'driscoll, Three-dimensional cell culture: the missing link in drug discovery, Drug Discov. Today, vol.18, issue.5, pp.240-249, 2013.

A. Zambon, High temporal resolution detection of patient-specific glucose uptake from human ex vivo adipose tissue on-chip, Anal. Chem, vol.87, issue.13, pp.6535-6543, 2015.

R. Sutherland, J. Carlsson, R. Durand, and J. Yuhas, Spheroids in cancer research, vol.41, pp.2980-2984, 1981.

L. Weiswald, D. Bellet, and V. Dangles-marie, Spherical cancer models in tumor biology, Neoplasia, vol.17, issue.1, pp.1-15, 2015.

P. E. Feist, Multicellular tumor spheroids combined with mass spectrometric histone analysis to evaluate epigenetic drugs, Anal. Chem, vol.89, issue.5, pp.2773-2781, 2017.

S. C. Bürgel, L. Diener, O. Frey, J. Kim, and A. Hierlemann, Automated, multiplexed electrical impedance spectroscopy platform for continuous monitoring of microtissue spheroids, Anal. Chem, vol.88, issue.22, pp.10876-10883, 2016.

R. M. Sutherland, J. A. Mccredie, and W. R. Inch, Growth of multicell spheroids in tissue culture as a model of nodular carcinomas 2, J. Natl. Cancer Inst, vol.46, issue.1, pp.113-120, 1971.

X. Gong, Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing, PLoS One, vol.10, issue.6, p.130348, 2015.

N. E. Timmins and L. K. Nielsen, Generation of multicellular tumor spheroids by the hanging-drop method, Tissue Eng, pp.141-151, 2007.

C. Fu, S. Tseng, S. Yang, L. Hsu, C. Liu et al., A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis, Biofabrication, vol.6, issue.1, p.15009, 2014.

R. K. Vadivelu, H. Kamble, M. J. Shiddiky, and N. Nguyen, Microfluidic technology for the generation of cell spheroids and their applications, Micromachines, vol.8, issue.4, p.94, 2017.

C. Chi, A. R. Ahmed, Z. Dereli-korkut, and S. Wang, Microfluidic cell chips for highthroughput drug screening, Bioanalysis, vol.8, issue.9, pp.921-937, 2016.

K. Zió?kowska, A. Stelmachowska, R. Kwapiszewski, M. Chudy, A. Dybko et al., Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip, Biosens. Bioelectron, vol.40, issue.1, pp.68-74, 2013.

K. Kwapiszewska, A. Michalczuk, M. Rybka, R. Kwapiszewski, and Z. Brzózka, A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening, Lab Chip, vol.14, issue.12, pp.2096-2104, 2014.

Y. Chen, D. Gao, H. Liu, S. Lin, and Y. Jiang, Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening, Anal. Chim. Acta, vol.898, pp.85-92, 2015.

M. Astolfi, Micro-dissected tumor tissues on chip: an ex vivo method for drug testing and personalized therapy, Lab Chip, vol.16, issue.2, pp.312-325, 2016.

M. Zanoni, 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained, Sci. Rep, vol.6, p.19103, 2016.

K. S. Mcmillan, M. Boyd, and M. Zagnoni, Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids, Lab Chip, vol.16, issue.18, pp.3548-3557, 2016.

B. Patra, C. Peng, W. Liao, C. Lee, and Y. Tung, Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device, Sci. Rep, vol.6, 2016.

K. Moshksayan, Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture, Sens. Actuators B Chem, vol.263, pp.151-176, 2018.

E. C. Costa, A. F. Moreira, D. De-melo-diogo, V. M. Gaspar, M. P. Carvalho et al., 3D tumor spheroids: an overview on the tools and techniques used for their analysis, Biotechnol. Adv, vol.34, issue.8, pp.1427-1441, 2016.

D. B. Amaral, S. M. Urabayashi, and M. G. Machado-santelli, Cell death and lumen formation in spheroids of MCF-7 cells, vol.34, pp.267-274, 2010.

E. C. Costa, V. M. Gaspar, P. Coutinho, and I. J. Correia, Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models, Biotechnol. Bioeng, vol.111, issue.8, pp.1672-1685, 2014.

H. Yao, The antitumor efficacy of functional paclitaxel nanomicelles in treating resistant breast cancers by oral delivery, Biomaterials, vol.32, issue.12, pp.3285-3302, 2011.

T. Yamashita, Y. Tanaka, N. Idota, K. Sato, K. Mawatari et al., Cultivation and recovery of vascular endothelial cells in microchannels of a separable microchemical chip, Biomaterials, vol.32, issue.10, pp.2459-2465, 2011.

Q. Chen, G. Li, Y. Nie, S. Yao, and J. Zhao, Investigation and improvement of reversible microfluidic devices based on glass-PDMS-glass sandwich configuration, Microfluid. Nanofluidics, vol.16, issue.1, pp.83-90, 2014.

R. Vecchione, G. Pitingolo, D. Guarnieri, A. P. Falanga, and P. A. Netti, From square to circular polymeric microchannels by spin coating technology: a low cost platform for endothelial cell culture, Biofabrication, vol.8, issue.2, pp.25005-025005, 2016.

T. Shih, C. Chen, J. Ho, and F. Chuang, Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding, Microelectron. Eng, vol.83, pp.2499-2503, 2006.

G. Pitingolo, R. Vecchione, A. P. Falanga, D. Guarnieri, and P. A. Netti, Fabrication of a modular hybrid chip to mimic endothelial-lined microvessels in flow conditions, J. Micromech. Microeng, vol.27, issue.3, p.35014, 2017.

K. Verhoeckx, The Impact of Food Bioactives on Health, 2015.

V. J. Venditto and E. E. Simanek, Cancer therapies utilizing the camptothecins: a review of the in vivo literature, Mol. Pharm, vol.7, issue.2, pp.307-349, 2010.

S. W. Ha, Y. J. Kim, W. Kim, and C. S. Lee, Antitumor effects of camptothecin combined with conventional anticancer drugs on the cervical and uterine squamous cell carcinoma cell line SiHa, Korean J. Physiol. Pharmacol, vol.13, issue.2, pp.115-121, 2009.

F. Goldwasser, I. Bae, M. Valenti, K. Torres, and Y. Pommier, Topoisomerase I-related parameters and camptothecin activity in the colon carcinoma cell lines from the National Cancer Institute anticancer screen, Cancer Res, vol.55, issue.10, pp.2116-2121, 1995.

E. Brouzes, Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci, vol.106, issue.34, pp.14195-14200, 2009.

A. Albanese, A. K. Lam, E. A. Sykes, J. V. Rocheleau, and W. C. Chan, Tumour-on-a-chip provides an optical window into nanoparticle tissue transport, Nat. Commun, vol.4, 2013.

S. Sart, R. F. Tomasi, G. Amselem, and C. N. Baroud, Multiscale cytometry and regulation of 3D cell cultures on a chip, Nat. Commun, vol.8, 2017.

S. Raghavan, P. Mehta, E. N. Horst, M. R. Ward, K. R. Rowley et al., Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity, Oncotarget, vol.7, issue.13, p.16948, 2016.

G. Pitingolo, V. Taly, and C. Nastruzzi, A second life for old electronic parts: a spin coater for microfluidic applications, 2018.

C. Davies, Diffusion and sedimentation of aerosol particles from Poiseuille flow in pipes, J. Aerosol Sci, vol.4, issue.4, pp.317-328, 1973.

Y. Q. Liu, Perspectives on biologically active camptothecin derivatives, Med. Res. Rev, vol.35, issue.4, pp.753-789, 2015.

K. Chen, Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers, Lab Chip, vol.16, issue.14, pp.2636-2643, 2016.

A. Riaud, M. Baudoin, O. B. Matar, L. Becerra, and J. Thomas, Selective manipulation of microscopic particles with precursor swirling rayleigh waves, Phys. Rev. Appl, vol.7, issue.2, p.24007, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519025

A. I. Minchinton and I. F. Tannock, Drug penetration in solid tumours, Nat. Rev. Cancer, vol.6, issue.8, p.583, 2006.

K. Zió?kowska, R. Kwapiszewski, A. Stelmachowska, M. Chudy, A. Dybko et al., Development of a three-dimensional microfluidic system for long-term tumor spheroid culture, Sens. Actuators B Chem, vol.173, pp.908-913, 2012.

, University Federico II of Napoli", working as fellow at the Center for Advanced Biomaterials for Healthcare (Istituto Italiano di Tecnologia). Previously, he joined the Biomaterials and Encapsulation Laboratories (University of Ferrara). His research topics include the development of micro-and nanoscale biomaterials to control cellular behavior with particular emphasis on developing engineered materials and microfluidic systems (tissue on chip) for drug screening, He is currently working as post-doctoral researcher at Translational Research & Microfluidics group