M. Brittberg, Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N. Engl. J. Med, vol.331, pp.889-895, 1994.

M. Schnabel, Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture, Osteoarthritis Cartilage, vol.10, pp.62-70, 2002.

A. J. Friedenstein, N. W. Latzinik, A. G. Grosheva, and U. F. Gorskaya, Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges, Exp. Hematol, vol.10, pp.217-227, 1982.

S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc. Natl. Acad. Sci. USA, vol.97, pp.13625-13630, 2000.

P. A. Zuk, Human adipose tissue is a source of multipotent stem cells, Mol. Biol. Cell, vol.13, pp.4279-4295, 2002.

K. Bieback, S. Kern, H. Klüter, and H. Eichler, Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood, Stem Cells, vol.22, pp.625-634, 2004.

M. Dominici, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, pp.315-317, 2006.

M. Demoor, Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction, Biochim. Biophys. Acta, vol.1840, pp.2414-2440, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132064

A. M. Mackay, Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow, Tissue Eng, vol.4, pp.415-428, 1998.

V. Lefebvre, W. Huang, V. R. Harley, P. N. Goodfellow, and B. De-crombrugghe, SOX9 is a potent activator of the chondrocytespecific enhancer of the pro alpha1(II) collagen gene, Mol. Cell. Biol, vol.17, pp.2336-2346, 1997.

L. J. Sandell, N. Morris, J. R. Robbins, and M. B. Goldring, Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide, J. Cell Biol, vol.114, pp.1307-1319, 1991.

K. Pelttari, Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice, Arthritis Rheum, vol.54, pp.3254-3266, 2006.

V. Mark and K. , Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy, Arthritis Rheum, vol.35, pp.806-811, 1992.

M. Kanawa, Age-dependent decrease in the chondrogenic potential of human bone marrow mesenchymal stromal cells expanded with fibroblast growth factor-2, Cytotherapy, vol.15, pp.1062-1072, 2013.

M. Zaim, S. Karaman, G. Cetin, and S. Isik, Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells, Ann. Hematol, vol.91, pp.1175-1186, 2012.

S. S. Kern, H. H. Eichler, J. J. Stoeve, H. H. Klüter, and K. K. Bieback, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue, Stem Cells, vol.24, pp.1294-1301, 2006.

W. C. Lo, Preferential therapy for osteoarthritis by cord blood MSCs through regulation of chondrogenic cytokines, Biomaterials, vol.34, pp.4739-4748, 2013.

J. Y. Chung, Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model, Stem Cell Res. Ther, vol.5, p.39, 2014.

Y. B. Park, M. Song, C. H. Lee, J. A. Kim, and C. W. Ha, Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model, J. Orthop. Res, vol.33, pp.1580-1586, 2015.

M. Brittberg, Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure, Am. J. Sports Med, vol.38, pp.1259-1271, 2010.

D. E. Trentham, A. S. Townes, and A. H. Kang, Autoimmunity to type II collagen an experimental model of arthritis, J. Exp. Med, vol.146, pp.857-868, 1977.

A. K. Lynn, I. V. Yannas, and W. Bonfield, Antigenicity and immunogenicity of collagen, J. Biomed. Mater. Res. Part B Appl. Biomater, vol.71, pp.343-354, 2004.

T. Ohno, Effect of type I and type II collagen sponges as 3D scaffolds for hyaline cartilage-like tissue regeneration on phenotypic control of seeded chondrocytes in vitro, Materials Science and Engineering: C, vol.24, pp.407-411, 2004.

A. Freyria, Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds, Tissue Eng. Part A, vol.15, pp.1233-1245, 2009.

S. Claus, Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular chondrocytes and their cultivation in collagen sponges, Tissue Eng. Part C Methods, vol.18, pp.104-112, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02200108

F. Legendre, Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia, Tissue Eng. Part C Methods, vol.19, pp.550-567, 2013.

D. Ollitrault, BMP-2, Hypoxia, and COL1A1/HtrA1 siRNAs Favor Neo-Cartilage Hyaline Matrix Formation in Chondrocytes, Tissue Eng. Part C Methods, vol.21, pp.133-147, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132060

H. Chajra, Collagen-based biomaterials and cartilage engineering, Biomed Mater Eng, vol.18, pp.33-45, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315232

K. K. Mareschi, Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood, Haematologica, vol.86, pp.1099-1100, 2001.

S. A. Wexler, Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not, Br. J. Haematol, vol.121, pp.368-374, 2003.

W. Wagner, Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood, Exp. Hematol, vol.33, pp.1402-1416, 2005.

X. Zhang, Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue, J. Cell. Biochem, vol.112, pp.1206-1218, 2011.

T. T. Sibov, Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation, Cytotechnology, vol.64, pp.511-521, 2012.

A. Jain, Does Mesenchymal Stem Cell Population in Umbilical Cord Blood Vary at Different Gestational Periods?, Indian J. Pediatr, vol.80, pp.375-379, 2013.

V. Dexheimer, S. Frank, and W. Richter, Proliferation as a requirement for in vitro chondrogenesis of human mesenchymal stem cells, Stem Cells Dev, vol.21, pp.2160-2169, 2012.

W. Wagner, Replicative senescence of mesenchymal stem cells: a continuous and organized process, PLoS ONE, vol.3, p.2213, 2008.

K. Tarte, Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation, Blood, vol.115, pp.1549-1553, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00744192

, Scientific RepoRts |, vol.6

L. Barkholt, Risk of tumorigenicity in mesenchymal stromal cell-based therapies--bridging scientific observations and regulatory viewpoints, Cytotherapy, vol.15, pp.753-759, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00874732

A. Pievani, Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential, Cytotherapy, vol.16, pp.893-905, 2014.

A. Muraglia, R. Cancedda, and R. Quarto, Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model, J. Cell. Sci, vol.113, pp.1161-1166, 2000.

A. Sorrentino, Isolation and characterization of CD146+ multipotent mesenchymal stromal cells, Exp. Hematol, vol.36, pp.1035-1046, 2008.

R. A. Somoza, J. F. Welter, D. Correa, and A. I. Caplan, Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations, Tissue Eng. Part B Rev, vol.20, pp.596-608, 2014.

E. Ragni, Adipogenic potential in human mesenchymal stem cells strictly depends on adult or fetal tissue harvest, Int. J. Biochem. Cell Biol, vol.45, pp.2456-2466, 2013.

C. S. De-mara, Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6, Rheumatol Int, vol.33, pp.121-128, 2012.

Y. S. Choi, Chondrogenic differentiation of human umbilical cord blood-derived multilineage progenitor cells in atelocollagen, Cytotherapy, vol.10, pp.165-173, 2008.

C. Co, M. K. Vickaryous, and T. G. Koch, Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro, Osteoarthritis Cartilage, vol.22, pp.472-480, 2014.

X. Li, Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro, J. Biomed. Mater. Res. A, vol.103, pp.1169-1175, 2015.

B. K. Hall and T. Miyake, All for one and one for all: condensations and the initiation of skeletal development, Bioessays, vol.22, pp.138-147, 2000.

A. Derfoul, G. L. Perkins, D. J. Hall, and R. S. Tuan, Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes, Stem Cells, vol.24, pp.1487-1495, 2006.

E. J. Sheehy, Tissue Engineering Whole Bones Through Endochondral Ossification: Regenerating the Distal Phalanx. Biores. Open Access, vol.4, pp.229-241, 2015.

F. Mwale, G. Yao, J. A. Ouellet, A. Petit, and J. Antoniou, Effect of parathyroid hormone on type X and type II collagen expression in mesenchymal stem cells from osteoarthritic patients, Tissue Eng. Part A, vol.16, pp.3449-3455, 2010.

B. O. Diekman, C. R. Rowland, D. P. Lennon, A. I. Caplan, and F. Guilak, Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix, Tissue Eng. Part A, vol.16, pp.523-533, 2010.

M. C. Ronzière, E. E. Perrier, F. F. Mallein-gerin, and A. A. Freyria, Chondrogenic potential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells, Biomed. Mater. Eng, vol.20, pp.145-158, 2010.

E. J. Sheehy, C. T. Buckley, and D. J. Kelly, Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells, Biochem. Biophys. Res. Commun, vol.417, pp.305-310, 2012.

S. Y. Jeong, Autocrine Action of Thrombospondin-2 Determines the Chondrogenic Differentiation Potential and Suppresses Hypertrophic Maturation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells, Stem Cells, vol.33, pp.3291-3303, 2015.

D. Correa, Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation, Osteoarthritis Cartilage, vol.23, pp.443-453, 2014.

V. Rosen, Responsiveness of clonal limb bud cell lines to bone morphogenetic protein 2 reveals a sequential relationship between cartilage and bone cell phenotypes, J. Bone Miner. Res, vol.9, pp.1759-1768, 1994.

F. Li, Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer, J. Bone Miner. Res, vol.26, pp.2899-2910, 2011.

M. Hirata, C/EBP? and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2? as the inducer in chondrocytes, Hum. Mol. Genet, vol.21, pp.1111-1123, 2012.

N. Shintani, K. A. Siebenrock, and E. B. Hunziker, TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy, PLoS ONE, vol.8, p.53086, 2013.