J. C. Baret, Y. Beck, and I. Billas-massobrio, Quantitative cell-based reporter gene assays using droplet-based microfluidics, Chem Biol, vol.17, pp.528-564, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02148764

N. R. Beer, E. K. Wheeler, and L. Lee-houghton, On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets, Anal Chem, vol.80, pp.1854-1862, 2008.

A. C. Hatch, J. S. Fisher, and A. R. Tovar, 1-Million droplet array with wide-field fluorescence imaging for digital PCR, Lab Chip, vol.11, pp.3838-3883, 2011.

M. M. Kiss, L. Ortoleva-donnelly, and N. R. Beer, High-throughput quantitative polymerase chain reaction in picoliter droplets, Anal Chem, vol.80, pp.8975-81, 2008.

D. Pekin, Y. Skhiri, and J. C. Baret, Quantitative and sensitive detection of rare mutations using droplet-based microfluidics, Lab Chip, vol.11, pp.2156-66, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02148770

V. Taly, D. Pekin, and L. Benhaim, Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients, Clin Chem, vol.59, pp.1722-1753, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02299581

L. A. Diaz and A. Bardelli, Liquid biopsies: genotyping circulating tumor DNA, J Clin Oncol, vol.32, pp.579-86, 2014.

G. Nixon, J. A. Garson, and P. Grant, Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus, Anal Chem, vol.86, p.438794, 2014.

R. H. Sedlak, L. Cook, and A. Cheng, Evaluation of the clinical utility of droplet digital PCR for human cytomegalovirus, J Clin Microbiol, vol.52, pp.6-11, 2014.

F. Lun, R. Chiu, A. Chan, and K. C. , Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma, Clin Chem, vol.54, pp.1664-72, 2008.

H. C. Fan and S. R. Quake, Detection of aneuploidy with digital polymerase chain reaction, Anal Chem, vol.79, pp.7576-7585, 2007.

F. Lun, N. Tsui, and K. Chan, Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma, Proc Natl Acad Sci, vol.105, pp.19920-19925, 2008.

A. Fallah-araghi, J. C. Baret, M. Ryckelynck, and A. D. Griffiths, A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution, Lab Chip, vol.12, pp.882-91, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02148773

L. Simi, N. Pratesi, and M. Vignoli, High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer, Am J Clin Pathol, vol.130, pp.247-53, 2008.

W. Weichert, C. Schewe, and A. Lehmann, KRAS genotyping of paraffinembedded colorectal cancer tissue in routine diagnostics, J Mol Diagnostics, vol.12, pp.35-42, 2010.

A. Lièvre, J. Bachet, and V. Boige, KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab, J Clin Oncol, vol.26, pp.374-383, 2008.

O. Caen, P. Nizard, and S. Garrigou, Apport de la PCR digitale pour la détection quantitative d'ADN tumoral circulant, Med Sci, vol.31, 2015.

, RÉFÉRENCES

C. L. Sawyers, The cancer biomarker problem, Nature, vol.452, pp.548-52, 2008.

T. B. Morrison, J. J. Weis, and C. T. Wittwer, Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification, Biotechniques, vol.24, pp.954-62, 1998.

P. M. Holland, R. D. Abramson, R. Watson, and D. H. Gelfand, Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase, Proc Natl Acad Sci, vol.88, pp.7276-80, 1991.

A. R. Thierry, F. Mouliere, E. Messaoudi, and S. , Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA, Nat Med, vol.20, pp.430-435, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02168071

P. J. Sykes, S. H. Neoh, and M. J. Brisco, Quantitation of targets for PCR by use of limiting dilution, Biotechniques, vol.13, pp.444-453, 1992.

B. Vogelstein, K. W. Kinzler, and P. Digital, Proc Natl Acad Sci, vol.96, pp.9236-9277, 1999.

B. J. Hindson, K. D. Ness, and D. A. Masquelier, High-throughput droplet digital PCR system for absolute quantitation of DNA copy number, Anal Chem, vol.83, pp.8604-8614, 2011.

T. C. Dingle, R. H. Sedlak, L. Cook, and K. R. Jerome, Tolerance of droplet-digital PCR versus real-time quantitative PCR to inhibitory substances, Clin Chem, vol.59, pp.1670-1672, 2013.

M. Baker, Digital PCR hits its stride, Nat Methods, vol.9, pp.541-545, 2012.

J. C. Baret, V. Taly, and M. Ryckelynck, Gouttes et émulsions : criblage à très haut débit en biologie, Med Sci, vol.25, pp.627-659, 2009.

T. Morrison, J. Hurley, and J. Garcia, Nanoliter high throughput quantitative PCR, Nucleic Acids Res, vol.34, p.123, 2006.

T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic large-scale integration, Science, vol.298, pp.580-584, 2002.

L. Warren, D. Bryder, I. L. Weissman, and S. R. Quake, Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR, Proc Natl Acad Sci, vol.103, pp.17807-17819, 2006.

T. Yung, K. Chan, and T. Mok, Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients, Clin Cancer Res, vol.15, pp.2076-84, 2009.

L. A. Henríquez-hernández, A. Valenciano, and E. Herrera-ramos, High-throughput genotyping system as a robust and useful tool in oncology: experience from a single institution, Biologicals, vol.41, pp.424-433, 2013.

J. Hudson, E. Duncavage, and A. Tamburrino, Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma, Exp Mol Pathol, vol.95, pp.62-69, 2013.

F. Shen, W. Du, and J. E. Kreutz, Digital PCR on a SlipChip. Lab Chip, vol.10, pp.2666-72, 2010.

R. Williams, S. G. Peisajovich, and O. J. Miller, Amplification of complex gene libraries by emulsion PCR, Nat Methods, vol.3, pp.545-50, 2006.

J. F. Huggett, C. A. Foy, and V. Benes, The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments, Clin Chem, vol.59, pp.892-902, 2013.

A. B. Theberge, F. Courtois, and Y. Schaerli, Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology, Angew Chemie, vol.49, pp.5846-68, 2010.

D. Dressman, H. Yan, and G. Traverso, Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations, Proc Natl Acad Sci, vol.100, pp.8817-8839, 2003.

F. Diehl, M. Li, and D. Dressman, Detection and quantification of mutations in the plasma of patients with colorectal tumors, Proc Natl Acad Sci, vol.102, pp.16368-73, 2005.

V. Taly, D. Pekin, A. El-abed, and P. Laurent-puig, Detecting biomarkers with microdroplet technology, Trends Mol Med, vol.18, pp.405-421, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02299585

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.442, pp.368-73, 2006.

S. Y. The, R. Lin, L. H. Hung, and A. P. Lee, Droplet microfluidics, Lab Chip, vol.8, pp.198-220, 20008.

J. C. Baret, Surfactants in droplet-based microfluidics, Lab Chip, vol.12, pp.422-455, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02148769