W. Turner, 1890) The cell theory, past and present, J. Anat. Physiol, vol.24, p.253

T. Haselgrubler, High-throughput, multiparameter analysis of single cells, Anal. Bioanal. Chem, vol.406, pp.3279-3296, 2014.

M. A. Goodell, Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments, Nat. Rev. Mol. Cell Biol, vol.16, pp.299-309, 2015.

N. Mcgranahan and C. Swanton, Biological and therapeutic impact of intratumor heterogeneity in cancer evolution, Cancer Cell, vol.27, pp.15-26, 2015.

J. R. Heath, Single-cell analysis tools for drug discovery and development, Nat. Rev. Drug. Discov, vol.15, pp.204-216, 2016.

C. Gawad, Single-cell genome sequencing: current state of the science, Nat. Rev. Genet, vol.17, pp.175-188, 2016.

N. Crosetto, Spatially resolved transcriptomics and beyond, Nat. Rev. Genet, vol.16, pp.57-66, 2015.

O. Schwartzman and A. Tanay, Single-cell epigenomics: techniques and emerging applications, Nat. Rev. Genet, vol.16, pp.716-726, 2015.

M. B. Elowitz, Stochastic gene expression in a single cell, Science, vol.297, pp.1183-1186, 2002.

J. K. Kim, Characterizing noise structure in singlecell RNA-seq distinguishes genuine from technical stochastic allelic expression, Nat. Commun, vol.6, p.8687, 2015.

A. K. Shalek, Single-cell RNA-seq reveals dynamic paracrine control of cellular variation, Nature, vol.510, pp.363-369, 2014.

R. Pinard, Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing, BMC Genom, vol.7, pp.216-216, 2006.

B. Ding, Normalization and noise reduction for single cell RNA-seq experiments, Bioinformatics, vol.31, pp.2225-2227, 2015.

J. L. He, Digital microfluidics for manipulation and analysis of a single cell, Int. J. Mol. Sci, vol.16, pp.22319-22332, 2015.

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.442, pp.368-373, 2006.

H. Esmaeilsabzali, Detection and isolation of circulating tumor cells: principles and methods, Biotechnol. Adv, vol.31, pp.1063-1084, 2013.

S. Lindström, High-density microwell chip for culture and analysis of stem cells, PLoS One, vol.4, p.6997, 2009.

J. L. He, Digital microfluidics for manipulation and analysis of a single cell, Int. J. Mol. Sci, vol.16, pp.22319-22332, 2015.

A. E. Saliba, Single-cell RNA-seq: advances and future challenges, Nucleic Acids Res, vol.42, pp.8845-8860, 2014.

J. Lim, Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays, Biomicrofluidics, vol.9, p.34101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01179083

M. Kim, Optofluidic ultrahigh-throughput detection of fluorescent drops, Lab Chip, vol.15, pp.1417-1423, 2015.

E. Brouzes, Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.14195-14200, 2009.

D. J. Collins, The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation, Lab Chip, vol.15, pp.3439-3459, 2015.

S. Koster, Drop-based microfluidic devices for encapsulation of single cells, Lab Chip, vol.8, pp.1110-1115, 2008.

N. Shembekar, Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics, Lab Chip, vol.16, pp.1314-1331, 2016.

A. Sciambi and A. R. Abate, Accurate microfluidic sorting of droplets at 30 kHz, Lab Chip, vol.15, pp.47-51, 2015.

D. J. Sukovich, Sequence specific sorting of DNA molecules with FACS using 3dPCR, Sci. Rep, vol.7, p.39385, 2017.

Y. Fu, Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.11923-11928, 2015.

M. Hammond, Picodroplet partitioned whole genome amplification of low biomass samples preserves genomic diversity for metagenomic analysis, vol.4, p.52, 2016.

A. M. Sidore, Enhanced sequencing coverage with digital droplet multiple displacement amplification, Nucleic Acids Res, vol.44, p.66, 2016.

Y. Fu, Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.11923-11928, 2015.

C. Gawad, Single-cell genome sequencing: current state of the science, Nat. Rev. Genet, vol.17, pp.175-188, 2016.

D. Wang and S. Bodovitz, Single cell analysis: the new frontier in 'omics', Trends Biotechnol, vol.28, pp.281-290, 2010.

C. Gawad, Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.17947-17952, 2014.

R. Novak, Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions, Angew. Chem. Int. Ed. Engl, vol.50, pp.390-395, 2011.

K. Leung, A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.7665-7670, 2012.

P. Kumaresan, High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets, Anal. Chem, vol.80, pp.3522-3529, 2008.

L. F. Cheow, Multiplexed locus-specific analysis of DNA methylation in single cells, Nat. Protoc, vol.10, pp.619-631, 2015.

E. P. Consortium, An integrated encyclopedia of DNA elements in the human genome, Nature, vol.489, pp.57-74, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02187850

J. D. Buenrostro, Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position, Nat. Methods, vol.10, pp.1213-1218, 2013.

J. D. Buenrostro, Single-cell chromatin accessibility reveals principles of regulatory variation, Nature, vol.523, pp.486-490, 2015.

A. Rotem, Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state, Nat. Biotechnol, vol.33, pp.1165-1172, 2015.

A. R. Wu, Quantitative assessment of single-cell RNA-sequencing methods, Nat. Methods, vol.11, pp.41-46, 2014.

A. A. Pollen, Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex, Nat. Biotechnol, vol.32, pp.1053-1058, 2014.

M. B. Johnson, Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex, Nat. Neurosci, vol.18, pp.637-646, 2015.

B. Treutlein, Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq, Nature, vol.509, pp.371-375, 2014.

R. J. Kimmerling, A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages, Nat. Commun, vol.7, p.10220, 2016.

H. C. Fan, Combinatorial labeling of single cells for gene expression cytometry, Science, vol.347, p.1258367, 2015.

T. M. Gierahn, Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput, Nat. Methods, vol.14, pp.395-398, 2017.

P. Mary, Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology, Biomicrofluidics, vol.5, p.24109, 2011.

D. J. Eastburn, Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops, Anal. Chem, vol.85, pp.8016-8021, 2013.

D. J. Eastburn, Identification and genetic analysis of cancer cells with PCR-activated cell sorting, Nucleic Acids Res, vol.42, p.128, 2014.

R. Zilionis, Single-cell barcoding and sequencing using droplet microfluidics, Nat. Protoc, vol.12, pp.4-73, 2017.

E. Z. Macosko, Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell, vol.161, pp.1202-1214, 2015.

A. M. Klein, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, vol.161, pp.1187-1201, 2015.

B. Adamson, A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response, Cell, vol.167, pp.1867-1882, 2016.

G. X. Zheng, Massively parallel digital transcriptional profiling of single cells, Nat. Commun, vol.8, p.14049, 2017.

A. Dixit, Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens, Cell, vol.167, issue.e17, pp.1853-1866, 2016.

R. A. Kellogg and S. Tay, Noise facilitates transcriptional control under dynamic inputs, Cell, vol.160, pp.381-392, 2015.

R. A. Kellogg, High-throughput microfluidic singlecell analysis pipeline for studies of signaling dynamics, Nat. Protoc, vol.9, pp.1713-1726, 2014.

J. Wang and F. Yang, Emerging single-cell technologies for functional proteomics in oncology, Expert Rev. Proteomics, vol.13, pp.805-815, 2016.

S. Gavasso, Single-cell proteomics: potential implications for cancer diagnostics, Expert Rev. Mol. Diagn, vol.16, pp.579-589, 2016.

Y. S. Shin, Protein signaling networks from single cell fluctuations and information theory profiling, Biophys. J, vol.100, pp.2378-2386, 2011.

S. C. Bendall, A deep profiler's guide to cytometry, Trends Immunol, vol.33, pp.323-332, 2012.

E. A. O'donnell, Multiparameter flow cytometry: advances in high resolution analysis, Immune Network, vol.13, pp.43-54, 2013.

S. C. Bendall, Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum, Science, vol.332, pp.687-696, 2011.

D. Furman, Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states, Nat. Med, vol.23, pp.174-184, 2017.

A. J. Hughes, Single-cell western blotting, Nat. Methods, vol.11, pp.749-755, 2014.

C. Kang, Single-cell western blotting after wholecell imaging to assess cancer chemotherapeutic response, Anal. Chem, vol.86, pp.10429-10436, 2014.

J. C. Love, A microengraving method for rapid selection of single cells producing antigen-specific antibodies, Nat. Biotechnol, vol.24, pp.703-707, 2006.

N. Varadarajan, Rapid, efficient functional characterization and recovery of HIV-specific human CD8, 2012.

, + T cells using microengraving, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.3885-3890

Q. Han, Polyfunctional responses by human T cells result from sequential release of cytokines, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.1607-1612, 2012.

Y. Lu, High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity, Anal. Chem, vol.85, pp.2548-2556, 2013.

Y. Lu, Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.607-615, 2015.

A. S. Genshaft, Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction, 2016.

, Genome Biol, vol.17, p.188

S. Fredriksson, Protein detection using proximitydependent DNA ligation assays, Nat. Biotech, vol.20, pp.473-477, 2002.

C. Ma, A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells, Nat. Med, vol.17, pp.738-743, 2011.

Q. Shi, Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.419-424, 2012.

L. Lin, Human NK cells licensed by killer Ig receptor genes have an altered cytokine program that modifies CD4 + T cell function, J. Immunol, vol.193, pp.940-949, 2014.

V. Chokkalingam, Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics, Lab Chip, vol.13, pp.4740-4744, 2013.

S. Darmanis, Simultaneous multiplexed measurement of RNA and proteins in single cells, Cell Rep, vol.14, pp.380-389, 2016.

M. Lundberg, Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood, Nucleic Acids Res, vol.39, pp.102-102, 2011.

A. J. Ibáñez, Mass spectrometry-based metabolomics of single yeast cells, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.8790-8794, 2013.

R. Zenobi, Single-cell metabolomics: analytical and biological perspectives, Science, vol.342, 2013.

M. Acar, Stochastic switching as a survival strategy in fluctuating environments, Nat. Genet, vol.40, pp.471-475, 2008.

A. Meyer, Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors, Nat. Chem, vol.7, pp.673-678, 2015.

D. Ferraro, Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis, Sci. Rep, vol.6, p.25540, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01323999

A. Fornell, Controlled lateral positioning of microparticles inside droplets using acoustophoresis, Anal. Chem, vol.87, pp.10521-10526, 2015.

P. Gruner, Stabilisers for water-in-fluorinated-oil dispersions: key properties for microfluidic applications, Curr. Opin. Colloid Interface Sci, vol.20, pp.183-191, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01213318

K. Churski, Rapid screening of antibiotic toxicity in an automated microdroplet system, Lab Chip, vol.12, pp.1629-1637, 2012.

F. Eduati, Rapid identification of optimal drug combinations for personalized cancer therapy using microfluidics, p.93906, 2016.

A. M. Klein, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, vol.161, pp.1187-1201, 2015.

E. Shapiro, Single-cell sequencing-based technologies will revolutionize whole-organism science, Nat. Rev. Genet, vol.14, pp.618-630, 2013.

M. A. Unger, Monolithic microfabricated valves and pumps by multilayer soft lithography, Science, vol.288, pp.113-116, 2000.

I. E. Araci and P. Brisk, Recent developments in microfluidic large scale integration, Curr. Opin. Biotechnol, vol.25, pp.60-68, 2014.

T. Thorsen, Microfluidic large-scale integration, Science, vol.298, pp.580-584, 2002.

D. Carlo and D. , Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays, Anal. Chem, vol.78, pp.4925-4930, 2006.

H. N. Joensson, A. Svahn, and H. , Droplet microfluidics -a tool for single-cell analysis, Angew. Chem. Int. Ed. Engl, vol.51, pp.12176-12192, 2012.

P. Gruner, Stabilisers for water-in-fluorinated-oil dispersions: key properties for microfluidic applications, Curr. Opin. Colloid Interface Sci, vol.20, pp.183-191, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01213318

J. Clausell-tormos, Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms, Chem. Biol, vol.15, pp.427-437, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02148746

B. L. Wang, Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption, Nat. Biotechnol, vol.32, pp.473-478, 2014.

H. Lu, High throughput single cell counting in droplet-based microfluidics, Sci. Rep, vol.7, p.1366, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01687572

V. Taly, Detecting biomarkers with microdroplet technology, Trends Mol. Med, vol.18, pp.405-416, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02299585

E. Brouzes, Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.14195-14200, 2009.

H. C. Fan, Combinatorial labeling of single cells for gene expression cytometry, Science, vol.347, p.1258367, 2015.