, Steps 18-25, preparation of hydrophobic glass slides for the chambers: 1.5 h Steps 26-29, biochemical protocol: 0.5-1 h Steps 30-55, microfluidic generation of droplets: 0.5-2 h Step 56, assay incubation: variable (1-24 h) Steps 57-70, chamber encapsulation: 5-15 min Steps 71-80, PDMS chip: 8.5 h

B. T. Burlingham and T. S. Widlanski, An intuitive look at the relationship of K i and IC 50 : a more general use for the Dixon plot, J. Chem. Educ, vol.80, pp.214-218, 2003.

A. Zimmer, I. Katzir, E. Dekel, A. E. Mayo, and U. Alon, Prediction of multidimensional drug dose responses based on measurements of drug pairs, Proc. Natl. Acad. Sci. USA, vol.113, pp.10442-10447, 2016.

E. M. Elnifro, A. M. Ashshi, R. J. Cooper, P. E. Klapper, and . Multiplex, PCR: optimization and application in diagnostic virology, Clin. Microbiol. Rev, vol.13, pp.559-570, 2000.

J. Santalucia, A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, Proc. Natl. Acad. Sci. USA, vol.95, pp.1460-1465, 1998.

J. N. Zadeh, NUPACK: analysis and design of nucleic acid systems, J. Comput. Chem, vol.32, pp.170-173, 2011.

S. A. Bustin, Why the need for qPCR publication guidelines? The case for MIQE, Methods, vol.50, pp.217-226, 2010.

M. Klingenberg, The original micropipette, Scientist, vol.20, pp.92-92, 2006.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography, Science, vol.288, pp.113-116, 2000.

T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic large-scale integration, Science, vol.298, pp.580-584, 2002.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, vol.507, pp.181-189, 2014.

B. Vogelstein and K. W. Kinzler, Digital PCR. Proc. Natl. Acad. Sci. USA, vol.96, pp.9236-9241, 1999.

Y. Rondelez, Microfabricated arrays of femtoliter chambers allow single molecule enzymology, Nat. Biotechnol, vol.23, pp.361-365, 2005.

E. A. Ottesen, J. W. Hong, S. R. Quake, and J. R. Leadbetter, Microfluidic digital PCR enables multigene analysis of individual environmental bacteria, Science, vol.314, pp.1464-1467, 2006.

D. Pekin, Quantitative and sensitive detection of rare mutations using droplet-based microfluidics, Lab Chip, vol.11, pp.2156-2166, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02148770

S. H. Kim, Large-scale femtoliter droplet array for digital counting of single biomolecules, Lab Chip, vol.12, pp.4986-4991, 2012.

D. Witters, Digital biology and chemistry, Lab Chip, vol.14, pp.3225-3232, 2014.

K. E. Petersen, Silicon as a mechanical material, Proc. IEEE, vol.70, pp.420-457, 1982.

D. C. Duffy, J. C. Mcdonald, O. J. Schueller, and G. M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem, vol.70, pp.4974-4984, 1998.

S. Teh, R. Lin, L. Hung, and A. P. Lee, Droplet microfluidics, Lab Chip, vol.8, pp.198-220, 2008.

M. Leman, F. Abouakil, A. D. Griffiths, and P. Tabeling, Droplet-based microfluidics at the femtolitre scale, Lab Chip, vol.15, pp.753-765, 2015.

J. Shim, Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays, ACS Nano, vol.7, pp.5955-5964, 2013.

M. R. Bringer, C. J. Gerdts, H. Song, J. D. Tice, and R. F. Ismagilov, Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets, Philos. Trans. A Math. Phys. Eng. Sci, vol.362, pp.1087-1104, 2004.

J. J. Agresti, Ultrahigh-throughput screening in drop-based microfluidics for directed evolution, Proc. Natl. Acad. Sci. USA, vol.107, pp.4004-4009, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02136491

A. R. Abate, T. Hung, P. Mary, J. J. Agresti, and D. A. Weitz, High-throughput injection with microfluidics using picoinjectors, Proc. Natl. Acad. Sci. USA, vol.107, pp.19163-19166, 2010.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, Droplet microfluidics for high-throughput biological assays, Lab Chip, vol.12, pp.2146-2155, 2012.

K. Hasatani, High-throughput and long-term observation of compartmentalized biochemical oscillators, Chem. Commun, vol.49, pp.8090-8092, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01901022

Y. Bai, A double droplet trap system for studying mass transport across a droplet-droplet interface, Lab Chip, vol.10, pp.1281-1285, 2010.

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip, vol.6, pp.437-446, 2006.

S. Kaneda, Pneumatic handling of droplets on-demand on a microfluidic device for seamless processing of reaction and electrophoretic separation, Electrophoresis, vol.31, pp.3719-3726, 2010.

J. H. Kim, Droplet microfluidics for producing functional microparticles, Langmuir, vol.30, pp.1473-1488, 2014.

O. Caen, Digital PCR compartmentalization II. Contribution for the quantitative detection of circulating tumor DNA, Med. Sci, vol.31, pp.180-186, 2015.

H. Yamashita, Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device, J. Biosci. Bioeng, vol.119, pp.492-495, 2015.

S. L. Anna, Droplets and bubbles in microfluidic devices, Annu. Rev. Fluid Mech, vol.48, pp.285-309, 2016.

C. N. Baroud, F. Gallaire, and R. Dangla, Dynamics of microfluidic droplets, Lab Chip, vol.10, pp.2032-2045, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01020657

M. Nakano, Single-molecule PCR using water-in-oil emulsion, J. Biotechnol, vol.102, pp.117-124, 2003.

R. Williams, Amplification of complex gene libraries by emulsion PCR, Nat. Methods, vol.3, pp.545-550, 2006.

M. Weitz, Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator, Nat. Chem, vol.6, pp.295-302, 2014.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett, vol.86, pp.4163-4166, 2001.

H. Song, D. L. Chen, and R. F. Ismagilov, Reactions in droplets in microfluidic channels, Angew. Chem. Int. Ed, vol.45, pp.7336-7356, 2006.

T. Ward, M. Faivre, M. Abkarian, and H. A. Stone, Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping, Electrophoresis, vol.26, pp.3716-3724, 2005.

V. Taly, B. T. Kelly, and A. D. Griffiths, Droplets as microreactors for highthroughput biology, ChemBioChem, vol.8, pp.263-272, 2007.

L. Mazutis, Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme, Lab Chip, vol.9, pp.2902-2908, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02148762

R. R. Pompano, W. S. Liu, W. B. Du, and R. F. Ismagilov, Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions, Annu. Rev. Anal. Chem, vol.4, pp.59-81, 2011.

V. Taly, Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients, Clin. Chem, vol.59, pp.1722-1731, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02299581

J. Lim, Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays, Biomicrofluidics, vol.9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01179083

H. Sugiura, Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system, Nat. Commun, vol.7, p.10212, 2016.

S. Matsumura, Transient compartmentalization of RNA replicators prevents extinction due to parasites, Science, vol.354, pp.1293-1296, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02294265

M. Eisenstein, Startups use short-read data to expand long-read sequencing market, Nat. Biotechnol, vol.33, pp.433-435, 2015.

M. Baker, Digital PCR hits its stride, Nat. Methods, vol.9, pp.541-544, 2012.

O. J. Miller, High-resolution dose-response screening using dropletbased microfluidics, Proc. Natl. Acad. Sci. USA, vol.109, pp.378-383, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02136487

B. Zheng, L. S. Roach, and R. F. Ismagilov, Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets, J. Am. Chem. Soc, vol.125, pp.11170-11171, 2003.

A. J. Genot, High-resolution mapping of bifurcations in nonlinear biochemical circuits, Nat. Chem, vol.8, pp.760-767, 2016.

T. Notomi, Loop-mediated isothermal amplification of DNA, Nucleic Acids Res, vol.28, p.63, 2000.

J. Van-ness, L. K. Van-ness, and D. J. Galas, Isothermal reactions for the amplification of oligonucleotides, Proc. Natl. Acad. Sci. USA, vol.100, pp.4504-4509, 2003.

K. A. Johnson and R. S. Goody, The original Michaelis constant: translation of the 1913 Michaelis-Menten paper, Biochemistry, vol.50, pp.8264-8269, 2011.

J. Borch and P. Roepstorff, Screening for enzyme inhibitors by surface plasmon resonance combined with mass spectrometry, Anal. Chem, vol.76, pp.5243-5248, 2004.

S. Fredriksson, Protein detection using proximity-dependent DNA ligation assays, Nat. Biotechnol, vol.20, pp.473-477, 2002.

M. D. Shults, K. A. Janes, D. A. Lauffenburger, and B. Imperiali, A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates, Nat. Methods, vol.2, pp.277-283, 2005.

T. P. Geladopoulos, T. G. Sotiroudis, and A. E. Evangelopoulos, A malachite green colorimetric assay for protein phosphatase-activity, Anal. Biochem, vol.192, pp.112-116, 1991.

J. Pelletier, G. Bellot, J. Pouysségur, and N. M. Mazure, Biochemical titration of glycogen in vitro, J. Vis. Exp, p.50465, 2013.

D. G. Gibson, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, vol.6, pp.343-345, 2009.

J. Shendure and H. L. Ji, Next-generation DNA sequencing, Nat. Biotechnol, vol.26, pp.1135-1145, 2008.

F. Gielen, Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS), Proc. Natl. Acad. Sci. USA, vol.113, pp.7383-7389, 2016.

P. Gruner, Stabilisers for water-in-fluorinated-oil dispersions: key properties for microfluidic applications, Curr. Opin. Colloid Interface Sci, vol.20, pp.183-191, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01213318

S. Q. Gu, Droplet-based microfluidics for dose-response assay of enzyme inhibitors by electrochemical method, Anal. Chim. Acta, vol.796, pp.68-74, 2013.

R. E. Gerver, Programmable microfluidic synthesis of spectrally encoded microspheres, Lab Chip, vol.12, pp.4716-4723, 2012.

L. F. Cai, Y. Zhu, G. S. Du, and Q. Fang, Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay, Anal. Chem, vol.84, pp.446-452, 2012.

A. B. Theberge, Microfluidic platform for combinatorial synthesis in picolitre droplets, Lab Chip, vol.12, pp.1320-1326, 2012.

X. Niu, F. Gielen, J. B. Edel, and A. J. Demello, A microdroplet dilutor for highthroughput screening, Nat. Chem, vol.3, pp.437-442, 2011.

M. Sun, S. S. Bithi, and S. A. Vanapalli, Microfluidic static droplet arrays with tuneable gradients in material composition, Lab Chip, vol.11, pp.3949-3952, 2011.

M. P. Bui, Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient, Anal. Chem, vol.83, pp.1603-1608, 2011.

W. B. Du, M. Sun, S. Q. Gu, Y. Zhu, and Q. Fang, Automated microfluidic screening assay platform based on drop lab, Anal. Chem, vol.82, pp.9941-9947, 2010.

W. B. Du, L. Li, K. P. Nichols, R. F. Ismagilov, and . Slipchip, Lab Chip, vol.9, pp.2286-2292, 2009.

N. Damean, L. F. Olguin, F. Hollfelder, C. Abell, and W. T. Huck, Simultaneous measurement of reactions in microdroplets filled by concentration gradients, Lab Chip, vol.9, pp.1707-1713, 2009.

R. M. Lorenz, Simultaneous generation of multiple aqueous droplets in a microfluidic device, Anal. Chim. Acta, vol.630, pp.124-130, 2008.

H. Song and R. F. Ismagilov, Millisecond kinetics on a microfluidic chip using nanoliters of reagents, J. Am. Chem. Soc, vol.125, pp.14613-14619, 2003.

P. Tabeling, Introduction to Microfluidics, 2005.

S. Kijani, Filter-dense multicolor microscopy, PLoS One, vol.10, 2015.

P. Paik, V. K. Pamula, and R. B. Fair, Rapid droplet mixers for digital microfluidic systems, Lab Chip, vol.3, pp.253-259, 2003.

X. Niu, S. Gulati, J. B. Edel, and A. J. Demello, Pillar-induced droplet merging in microfluidic circuits, Lab Chip, vol.8, pp.1837-1841, 2008.

F. Courtois, Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays, Anal. Chem, vol.81, pp.3008-3016, 2009.

Y. Skhiri, Dynamics of molecular transport by surfactants in emulsions, Soft Matter, vol.8, pp.10618-10627, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02148774

P. Gruner, Controlling molecular transport in minimal emulsions, Nat. Commun, vol.7, p.10392, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276355

T. W. Hofmann, S. H. Anselmann, J. W. Janiesch, A. Rademacher, and C. H. Bohm, Applying microdroplets as sensors for label-free detection of chemical reactions, Lab Chip, vol.12, pp.916-922, 2012.

X. B. Li, F. C. Li, H. Kinoshita, M. Oishi, and M. Oshima, Dynamics of viscoelastic fluid droplet under very low interfacial tension in a serpentine T-junction microchannel, Microfluid. Nanofluid, vol.18, pp.1007-1021, 2015.

D. Qin, Y. N. Xia, and G. M. Whitesides, Soft lithography for micro-and nanoscale patterning, Nat. Protoc, vol.5, pp.491-502, 2010.

L. Mazutis, Single-cell analysis and sorting using droplet-based microfluidics, Nat. Protoc, vol.8, pp.870-891, 2013.

S. Kaneda, Modification of the glass surface property in PDMS-glass hybrid microfluidic devices, Anal. Sci, vol.28, pp.39-44, 2012.

J. C. Baret, Surfactants in droplet-based microfluidics, Lab Chip, vol.12, pp.422-433, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02148769

C. Holtze, Biocompatible surfactants for water-in-fluorocarbon emulsions, Lab Chip, vol.8, pp.1632-1639, 2008.

Q. Zhong, Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR, Lab Chip, vol.11, pp.2167-2174, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02299588

J. C. Baret, Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity, Lab Chip, vol.9, pp.1850-1858, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02148757

C. H. Schmitz, A. C. Rowat, S. Koster, and D. A. Weitz, Dropspots: a picoliter array in a microfluidic device, Lab Chip, vol.9, pp.44-49, 2009.

C. A. Heid, J. Stevens, K. J. Livak, and P. M. Williams, Real time quantitative PCR, Genome Res, vol.6, pp.986-994, 1996.

M. Schmidt and H. Lipson, Distilling free-form natural laws from experimental data, Science, vol.324, pp.81-85, 2009.

A. Cully, J. Clune, D. Tarapore, and J. B. Mouret, Robots that can adapt like animals, Nature, vol.521, pp.503-507, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01158243

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput, vol.6, pp.182-197, 2002.

P. Kask, K. Palo, C. Hinnah, and T. Pommerencke, Flat field correction for high-throughput imaging of fluorescent samples, J. Microsc, vol.263, pp.328-340, 2016.

H. Tanaka, Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR, Anal. Chem, vol.87, pp.4134-4143, 2015.

K. R. Pandit, P. E. Rueger, R. V. Calabrese, S. R. Raghavan, and I. M. White, Assessment of surfactants for efficient droplet PCR in mineral oil using the pendant drop technique, Colloids Surf. B Biointerfaces, vol.126, pp.489-495, 2015.