F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, The third dimension bridges the gap between cell culture and live tissue, Nat. Rev. Mol. Cell Biol, vol.8, p.839, 2007.

D. Huh, G. A. Hamilton, and D. E. Ingber, From 3D cell culture to organs-on-chips, Trends Cell Biol, vol.21, pp.745-754, 2011.

H. Dolznig, C. Rupp, C. Puri, C. Haslinger, N. Schweifer et al., Modeling colon adenocarcinomas in vitro: A 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction, Am. J. Pathol, vol.179, pp.487-501, 2011.

C. Fischbach, H. J. Kong, S. X. Hsiong, M. B. Evangelista, W. Yuen et al., Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement, Proc. Natl. Acad. Sci, vol.106, pp.399-404, 2009.

M. Pickl and C. Ries, Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab, Oncogene, vol.28, p.461, 2009.

A. Takagi, M. Watanabe, Y. Ishii, J. Morita, Y. Hirokawa et al., Three-dimensional cellular spheroid formation provides human prostate tumor cells with tissue-like features, Anticancer Res, vol.27, pp.45-53, 2007.

B. Desoize and J. Jardillier, Multicellular resistance: A paradigm for clinical resistance?, Crit. Rev. Oncol./Hematol, vol.36, pp.193-207, 2000.

V. Brancato, F. Gioiella, M. Profeta, G. Imparato, D. Guarnieri et al., 3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems, Acta Biomater, vol.57, pp.47-58, 2017.

R. M. Sutherland, J. A. Mccredie, and W. R. Inch, Growth of Multicell Spheroids in Tissue Culture as a Model of Nodular Carcinomas 2, J. Natl. Cancer Inst, vol.46, pp.113-120, 1971.

X. Gong, C. Lin, J. Cheng, J. Su, H. Zhao et al., Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing, PLoS ONE, vol.10, 2015.

V. E. Santo, M. F. Estrada, S. P. Rebelo, S. Abreu, I. Silva et al., Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models, J. Biotechnol, vol.221, pp.118-129, 2016.

N. E. Timmins and L. K. Nielsen, Generation of multicellular tumor spheroids by the hanging-drop method, Tissue Eng, vol.140, pp.141-151, 2007.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-klieser et al., Multicellular tumor spheroids: An underestimated tool is catching up again, J. Biotechnol, vol.148, pp.3-15, 2010.

R. K. Vadivelu, H. Kamble, M. J. Shiddiky, and N. Nguyen, Microfluidic Technology for the Generation of Cell Spheroids and Their Applications, vol.8, p.94, 2017.

G. Pitingolo, P. Nizard, A. Riaud, and V. Taly, Beyond the on/off Chip Trade-off: A Reversibly Sealed Microfluidic Platform for 3D Tumor Microtissue Analysis, Sens. Actuators B, vol.274, pp.393-401, 2018.

M. Verhulsel, M. Vignes, S. Descroix, L. Malaquin, D. M. Vignjevic et al., A review of microfabrication and hydrogel engineering for micro-organs on chips, Biomaterials, vol.35, pp.1816-1832, 2014.

M. W. Tibbitt and K. S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture, Biotechnol. Bioeng, vol.103, pp.655-663, 2009.

C. Loebel, S. E. Szczesny, B. D. Cosgrove, M. Alini, M. Zenobi-wong et al., Cross-linking chemistry of tyramine-modified hyaluronan hydrogels alters mesenchymal stem cell early attachment and behavior, Biomacromolecules, vol.18, pp.855-864, 2017.

A. Khademhosseini and R. Langer, Microengineered hydrogels for tissue engineering, Biomaterials, vol.28, pp.5087-5092, 2007.

L. Wang, G. Lu, Q. Lu, and D. L. Kaplan, Controlling Cell Behavior on Silk Nanofiber Hydrogels with Tunable Anisotropic Structures, ACS Biomater. Sci. Eng, vol.4, pp.933-941, 2018.

B. G. Chung, K. Lee, A. Khademhosseini, and S. Lee, Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering, Lab Chip, vol.12, pp.45-59, 2012.

J. J. Campbell, A. Husmann, R. D. Hume, C. J. Watson, and R. E. Cameron, Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines, Biomaterials, vol.114, pp.34-43, 2017.

J. Lam, N. F. Truong, and T. Segura, Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds, Acta Biomater, vol.10, pp.1571-1580, 2014.

H. K. Kleinman and G. R. Martin, Matrigel: Basement membrane matrix with biological activity, Semin. Cancer Biol, vol.15, pp.378-386, 2005.

G. Camci-unal, D. Cuttica, N. Annabi, D. Demarchi, and A. Khademhosseini, Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels, Biomacromolecules, vol.14, pp.1085-1092, 2013.

J. Rose, S. Pacelli, A. Haj, H. Dua, A. Hopkinson et al., Gelatin-based materials in ocular tissue engineering, Materials, vol.7, pp.3106-3135, 2014.

D. P. Speer, M. Chvapil, C. Eskelson, and J. Ulreich, Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials, J. Biomed. Mater. Res, vol.14, pp.753-764, 1980.

J. A. Benton, C. A. Deforest, V. Vivekanandan, and K. S. Anseth, Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function, Tissue Eng. Part A, vol.15, pp.3221-3230, 2009.

H. Bae, A. F. Ahari, H. Shin, J. W. Nichol, C. B. Hutson et al., Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation, Soft Matter, vol.7, 1903.

Y. Zuo, X. Liu, D. Wei, J. Sun, W. Xiao et al., Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon, ACS Appl. Mater. Interfaces, vol.7, pp.10386-10394, 2015.

X. Zhao, Q. Lang, L. Yildirimer, Z. Y. Lin, W. Cui et al., Photocrosslinkable gelatin hydrogel for epidermal tissue engineering, Adv. Healthc. Mater, vol.5, pp.108-118, 2016.

A. Yannas and A. Tobolsky, Cross-Linking of gelatine by dehydration, Nature, vol.215, 1967.

R. Vecchione, G. Pitingolo, A. P. Falanga, D. Guarnieri, and P. A. Netti, Confined gelatin dehydration as a viable route to go beyond micromilling resolution and miniaturize biological assays, ACS Appl. Mater. Interfaces, vol.8, pp.12075-12081, 2016.

G. Pitingolo, V. Taly, and C. Nastruzzi, A Second Life for Old Electronic Parts: A Spin Coater for Microfluidic Applications, 2018.

C. Tsao and D. L. Devoe, Bonding of thermoplastic polymer microfluidics, vol.6, pp.1-16, 2009.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski et al., Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci, vol.106, pp.14195-14200, 2009.

N. Davidenko, C. F. Schuster, D. V. Bax, R. W. Farndale, S. Hamaia et al., Evaluation of cell binding to collagen and gelatin: A study of the effect of 2D and 3D architecture and surface chemistry, J. Mater. Sci. Mater. Med, vol.27, 2016.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI