R. Van-der-meel, M. H. Fens, P. Vader, W. W. Van-solinge, O. Eniola-adefeso et al., Extracellular Vesicles as Drug Delivery Systems: Lessons from the Liposome Field, J. Controlled Release, vol.195, pp.72-85, 2014.

R. W. Yeo, R. C. Lai, B. Zhang, S. S. Tan, Y. Yin et al., Mesenchymal Stem Cell: An Efficient Mass Producer of Exosomes for Drug Delivery, Adv. Drug Delivery Rev, vol.65, pp.336-341, 2013.

E. V. Batrakova and M. S. Kim, Using Exosomes, NaturallyEquipped Nanocarriers, for Drug Delivery, J. Controlled Release, vol.219, pp.396-405, 2015.

P. Vader, E. A. Mol, G. Pasterkamp, and R. M. Schiffelers,

, Extracellular Vesicles for Drug Delivery, Adv. Drug Delivery Rev, vol.106, pp.148-156, 2016.

U. Bulbake, S. Doppalapudi, N. Kommineni, and W. Khan, Liposomal Formulations in Clinical Use: An Updated Review, Pharmaceutics, vol.9, p.12, 2017.

E. Chargaff and R. West, The Biological Significance of the Thromboplastic Protein of Wood, J. Biol. Chem, vol.166, pp.189-197, 1946.

K. Al-nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May et al., Intercellular Transfer of the Oncogenic Receptor EgfrvIII by Microvesicles Derived from Tumour Cells, Nat. Cell Biol, vol.10, pp.619-624, 2008.

K. Ridder, S. Keller, M. Dams, A. Rupp, J. Schlaudraff et al., Extracellular Vesicle-Mediated Transfer of Genetic Information between the Hematopoietic System and the Brain in Response to Inflammation, PLoS Biol, vol.12, p.1001874, 2014.

A. P. Owens and N. Mackman, Microparticles in Hemostasis and Thrombosis, Circ. Res, vol.108, 1284.

C. M. Boulanger, N. Amabile, A. Tedgui, and . Microparticles, Hypertension, vol.48, pp.180-186, 2006.

N. Cloutier, S. Tan, L. H. Boudreau, C. Cramb, R. Subbaiah et al., The Exposure of Autoantigens by Microparticles Underlies the Formation of Potent Inflammatory Components: The MicroparticleAssociated Immune Complexes, EMBO Mol. Med, issue.5, pp.235-249, 2013.

C. Redman and I. Sargent, Microparticles and Immunomodulation in Pregnancy and Pre-Eclampsia, J. Reprod. Immunol, vol.76, pp.61-67, 2007.

F. W. Lai, B. D. Lichty, D. M. Bowdish, and . Microvesicles, Ubiquitous Contributors to Infection and Immunity, J. Leukocyte Biol, vol.97, pp.237-245, 2015.

P. Vader, X. O. Breakefield, and M. J. Wood, Extracellular Vesicles: Emerging Targets for Cancer Therapy, Trends Mol. Med, vol.20, pp.385-393, 2014.

T. H. Lee, E. ;-d'asti, N. Magnus, K. Al-nedawi, B. Meehan et al., Microvesicles as Mediators of Intercellular Communication in Cancer?the Emerging Science of Cellular 'Debris', Semin. Immunopathol, vol.33, pp.455-467, 2011.

M. Khan, E. Nickoloff, T. Abramova, J. Johnson, and S. Verma,

K. Krishnamurthy, P. Mackie, A. R. Vaughan, E. Garikipati, V. N. Benedict et al., Cardiovascular Progenitor?Derived Extracellular Vesicles Recapitulate the Beneficial Effects of Their Parent Cells in the Treatment of Chronic Heart Failure, J. Heart Lung Tranplant, vol.33, issue.17, pp.795-807, 2015.

A. D. Pusic and R. P. Kraig, Youth and Environmental Enrichment Generate Serum Exosomes Containing Mir-219 That Promote Cns Myelination, Glia, vol.62, pp.284-299, 2014.

C. Y. Tan, R. C. Lai, W. Wong, Y. Y. Dan, S. Lim et al., Mesenchymal Stem Cell-Derived Exosomes Promote Hepatic Regeneration in Drug-Induced Liver Injury Models, Stem Cell Res. Ther, vol.5, p.76, 2014.

C. The?y, M. Ostrowski, and E. Segura, Membrane Vesicles as Conveyors of Immune Responses, Nat. Rev. Immunol, vol.9, pp.581-593, 2009.

B. Escudier, T. Dorval, N. Chaput, F. Andre, M. Caby et al., Paclitaxel Is Incorporated by Mesenchymal Stromal Cells and Released in Exosomes That Inhibit In Vitro Tumor Growth: A New Approach for Drug Delivery, J. Controlled Release, vol.3, issue.10, pp.262-270, 2005.

H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J. J. Lee et al., Exosome-Mediated Transfer of Mrnas and Micrornas Is a Novel Mechanism of Genetic Exchange between Cells, Nat. Cell Biol, vol.9, pp.654-659, 2007.

D. Kim, J. Lee, R. J. Simpson, J. Lo?vall, Y. S. Gho et al., A Community Web Resource for Prokaryotic and Eukaryotic Extracellular Vesicles Research, Semin. Cell Dev. Biol, vol.40, pp.4-7, 2015.

H. Kalra, R. J. Simpson, H. Ji, E. Aikawa, P. Altevogt et al., Therapeutic Msc Exosomes Are Derived from Lipid Raft Microdomains in the Plasma Membrane, J. Extracell. Vesicles, vol.10, issue.26, p.1001450, 2012.

S. Keerthikumar, D. Chisanga, D. Ariyaratne, H. Saffar, S. Anand et al., Exocarta: A Web-Based Compendium of Exosomal Cargo, J. Mol. Biol, vol.428, pp.688-692, 2016.

M. C. Deregibus, V. Cantaluppi, R. Calogero, M. L. Iacono, C. Tetta et al., Endothelial Progenitor Cell?Derived Microvesicles Activate an Angiogenic Program in Endothelial Cells by a Horizontal Transfer of Mrna, Blood, vol.110, pp.2440-2448, 2007.

S. Kamerkar, V. S. Lebleu, H. Sugimoto, S. Yang, C. F. Ruivo et al., Exosomes Facilitate Therapeutic Targeting of Oncogenic Kras in Pancreatic Cancer, Nature, vol.546, p.498, 2017.

D. Sun, X. Zhuang, X. Xiang, Y. Liu, S. Zhang et al., A Novel Nanoparticle Drug Delivery System: The Anti-Inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes, Mol. Ther, vol.18, issue.9, pp.1606-1614, 2010.

M. J. Haney, N. L. Klyachko, Y. Zhao, R. Gupta, E. G. Plotnikova et al., Exosomes as Drug Delivery Vehicles for Parkinson's Disease Therapy, J. Controlled Release, vol.207, 2015.

Y. Tian, S. Li, J. Song, T. Ji, M. Zhu et al., A Doxorubicin Delivery Platform Using Engineered Natural Membrane Vesicle Exosomes for Targeted Tumor Therapy, Biomaterials, vol.35, 2014.

J. Lee, H. Lee, U. Goh, J. Kim, M. Jeong et al., Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles, ACS Appl. Mater. Interfaces, vol.8, pp.6790-6795, 2016.

J. P. Armstrong, M. N. Holme, and M. M. Stevens, Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics, ACS Nano, vol.11, pp.69-83, 2017.

L. Alvarez-erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal et al., Delivery of SiRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes, Nat. Biotechnol, vol.29, pp.341-345, 2011.

T. A. Shtam, R. A. Kovalev, E. Y. Varfolomeeva, E. M. Makarov, Y. V. Kil et al., Exosomes Are Natural Carriers of Exogenous Sirna to Human Cells, Cell Commun. Signaling, issue.11, p.88, 2013.

A. B. Banizs, T. Huang, K. Dryden, S. S. Berr, J. R. Stone et al., In Vitro Evaluation of Endothelial Exosomes as Carriers for Small Interfering Ribonucleic Acid Delivery, Int. J. Nanomed, vol.9, pp.4223-4230, 2014.

F. Momen-heravi, S. Bala, T. Bukong, and G. Szabo, ExosomeMediated Delivery of Functionally Active Mirna-155 Inhibitor to Macrophages, Nanomedicine, vol.10, pp.1517-1527, 2014.

T. N. Lamichhane, R. S. Raiker, and S. M. Jay, Exogenous DNA Loading into Extracellular Vesicles via Electroporation Is SizeDependent and Enables Limited Gene Delivery, Mol. Pharmaceutics, vol.12, pp.3650-3657, 2015.

S. A. Kooijmans, S. Stremersch, K. Braeckmans, S. C. De-smedt, A. Hendrix et al., Electroporation-Induced SiRNA Precipitation Obscures the Efficiency of Sirna Loading into Extracellular Vesicles, J. Controlled Release, vol.172, pp.229-238, 2013.

Q. Wang, Y. Ren, J. Mu, N. K. Egilmez, X. Zhuang et al., Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites, Cancer Res, vol.75, 2015.

X. Luan, K. Sansanaphongpricha, I. Myers, H. Chen, H. Yuan et al., Engineering Exosomes as Refined Biological Nanoplatforms for Drug Delivery, Acta Pharmacol. Sin, vol.38, p.754, 2017.

Y. T. Sato, K. Umezaki, S. Sawada, S. Mukai, Y. Sasaki et al., Engineering Hybrid Exosomes by Membrane Fusion with, Liposomes. Sci. Rep, vol.6, p.21933, 2016.

B. R. Lentz, PEG as a Tool to Gain Insight into Membrane Fusion, Eur. Biophys. J, vol.36, pp.315-326, 2007.

B. R. Lentz, J. Lee, and . Poly, Ethylene Glycol)(PEG)-Mediated Fusion between Pure Lipid Bilayers: A Mechanism in Common with Viral Fusion and Secretory Vesicle Release?, Mol. Membr. Biol, vol.16, pp.279-296, 1999.

B. L. Scott, J. S. Van-komen, S. Liu, T. Weber, T. J. Melia et al., Liposome Fusion Assay to Monitor Intracellular Membrane Fusion Machines, Methods Enzymol, vol.372, pp.274-300, 2003.

F. Parlati, T. Weber, J. A. Mcnew, B. Westermann, T. H. Sollner et al., Rapid and Efficient Fusion of Phospholipid Vesicles by the ?-Helical Core of a Snare Complex in the Absence of an N-Terminal Regulatory Domain, Proc. Natl. Acad. Sci. U. S. A, vol.96, 1999.

R. Kedmi, N. Ben-arie, and D. Peer, The Systemic Toxicity of Positively Charged Lipid Nanoparticles and the Role of Toll-Like Receptor 4 in Immune Activation, Biomaterials, issue.26, pp.6867-6875, 2010.

A. K. Silva, J. Kolosnjaj-tabi, S. Bonneau, I. Marangon, N. Boggetto et al., Magnetic and Photoresponsive Theranosomes: Translating Cell-Released Vesicles into Smart Nanovectors for Cancer Therapy, ACS Nano, vol.7, pp.4954-4966, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01244563

L. V. Chernomordik, V. A. Frolov, E. Leikina, P. Bronk, and J. Zimmerberg, The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation, J. Cell Biol, vol.140, pp.1369-1382, 1998.

C. G. Giraudo, C. Hu, D. You, A. M. Slovic, E. V. Mosharov et al., Snares Can Promote Complete Fusion and Hemifusion as Alternative Outcomes, J. Cell Biol, vol.170, pp.249-260, 2005.

T. Wang, E. A. Smith, E. R. Chapman, and J. C. Weisshaar, Lipid Mixing and Content Release in Single-Vesicle, Snare-Driven Fusion Assay with 1?5 Ms Resolution, Biophys. J, vol.96, pp.4122-4131, 2009.

A. J. Versluis, E. T. Rump, P. C. Rensen, T. J. Van-berkel, and M. K. Bijsterbosch, Stable Incorporation of a Lipophilic Daunorubicin Prodrug into Apolipoprotein E-Exposing Liposomes Induces Uptake of Prodrug via Low-Density Lipoprotein Receptor in Vivo, J. Pharmacol. Exp. Ther, vol.289, pp.1-7, 1999.

A. V. Vlassov, S. Magdaleno, R. Setterquist, and R. Conrad, Exosomes: Current Knowledge of Their Composition, Biological Functions, and Diagnostic and Therapeutic Potentials, Biochim. Biophys. Acta, pp.940-948, 1820.

A. Engel and P. Walter, Membrane Lysis During Biological Membrane Fusion: Collateral Damage by Misregulated Fusion Machines, J. Cell Biol, vol.183, pp.181-186, 2008.

A. Faraj, A. Gazeau, F. Wilhelm, C. Devue, C. Gue?in et al., Endothelial Cell?Derived Microparticles Loaded with Iron Oxide Nanoparticles: Feasibility of Mr Imaging Monitoring in Mice, Radiology, vol.263, pp.169-178, 2012.

A. K. Silva, N. Luciani, F. Gazeau, K. Aubertin, S. Bonneau et al., Combining Magnetic Nanoparticles with Cell Derived Microvesicles for Drug Loading and Targeting, Nanomedicine, vol.11, pp.645-655, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01244559

A. K. Silva, R. Di-corato, F. Gazeau, T. Pellegrino, and C. Wilhelm, Magnetophoresis at the Nanoscale: Tracking the Magnetic Targeting Efficiency of Nanovectors, Nanomedicine, vol.2012, issue.11, pp.1713-1727

S. Kooijmans, L. Fliervoet, R. Van-der-meel, M. Fens, H. Heijnen et al., Pegylated and Targeted Extracellular Vesicles Display Enhanced Cell Specificity and Circulation Time, J. Controlled Release, vol.224, pp.77-85, 2016.

T. Imai, Y. Takahashi, M. Nishikawa, K. Kato, M. Morishita et al., Macrophage-Dependent Clearance of Systemically Administered B16bl6-Derived Exosomes from the Blood Circulation in Mice, J. Extracell. Vesicles, 2015.

J. M. Harris and R. B. Chess, Effect of Pegylation on Pharmaceuticals, Nat. Rev. Drug Discovery, vol.2, pp.214-221, 2003.

S. Bruno, F. Collino, A. Iavello, and G. Camussi, Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles on Tumor Growth. Front. Immunol, vol.5, p.382, 2014.

R. Massart, Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media, IEEE Trans. Magn, vol.17, pp.1247-1248, 1981.

N. Arraud, R. Linares, S. Tan, C. Gounou, J. M. Pasquet et al., Extracellular Vesicles from Blood Plasma: Determination of Their Morphology, Size, Phenotype and Concentration, J. Thromb. Haemostasis, vol.12, pp.614-627, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00996592

D. Tareste, J. Shen, T. J. Melia, and J. E. Rothman, Snarepin/ Munc18 Promotes Adhesion and Fusion of Large Vesicles to Giant Membranes, Proc. Natl. Acad. Sci. U. S. A, vol.105, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-02296589

C. The?y, S. Amigorena, G. Raposo, A. Clayton, N. Vats et al., Magnetic Tagging of Cell-Derived Microparticles: New Prospects for Imaging and Manipulation of These Mediators of Biological Information, Cell Culture Supernatants and Biological Fluids. Curr. Protoc. Cell Biol, vol.30, issue.67, pp.727-738, 2006.

C. Wilhelm, F. Lavialle, C. Pe?houx, I. Tatischeff, and F. Gazeau, Intracellular Trafficking of Magnetic Nanoparticles to Design Multifunctional Biovesicles, Small, vol.4, pp.577-582, 2008.

J. Webber, A. Clayton, S. E. Headland, H. R. Jones, A. S. ;-d'sa et al., How Pure Are Your Vesicles?, Analysis of Extracellular Microparticles Using Imagestreamx Imaging Flow Cytometry. Sci. Rep. 2015, 4, vol.2, p.5237, 2013.