V. L. Roger, A. S. Go, and L. Dm, Heart disease and stroke statistics-2012 update, A report from the American Heart Association. Circulation, vol.125, pp.2-220, 2012.

D. L. Mann, Mechanisms and models in heart failure: a combinatorial approach, Circulation, vol.100, pp.999-1008, 1999.

R. Martos, J. Baugh, and M. Ledwidge, Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction, Circulation, vol.115, pp.888-895, 2007.

N. Mewton, C. Y. Liu, P. Croisille, D. Bluemke, and J. A. Lima, Assessment of myocardial fibrosis with cardiovascular magnetic resonance, J Am Coll Cardiol, vol.57, pp.891-903, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02077225

I. Shiojima, K. Sato, and Y. Izumiya, Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure, J Clin Invest, vol.115, pp.2108-2118, 2005.

J. Diez, R. Querejeta, and B. Lopez, Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients, Circulation, vol.105, pp.2512-2517, 2002.

F. Zannad, A. F. Dousset, B. Perez, A. Pitt, and B. , Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators, Circulation, vol.102, pp.2700-2706, 2000.

S. Banquet, E. Gomez, and L. Nicol, Arteriogenic therapy by Intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure, Circulation, vol.124, pp.1059-1069, 2011.

L. T. Cooper, K. L. Baughman, and A. M. Feldman, The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology, Eur Heart J, vol.28, pp.3076-3093, 2007.

B. Lopez, A. Gonzalez, R. Querejeta, and J. Diez, The use of collagen-derived serum peptides for the clinical assessment of hypertensive heart disease, J Hypertens, vol.23, pp.1445-1451, 2005.

. Van-den-borne, . Sw, S. Isobe, and J. W. Verjans, Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction, J Am Coll Cardiol, vol.52, pp.2017-2028, 2008.

R. H. Hoyt, S. M. Collins, D. J. Skorton, E. E. Ericksen, and D. Conyers, Assessment of fibrosis in infracted human hearts by analysis of ultrasonic backscatter, Circulation, vol.71, pp.740-744, 1985.

J. W. Verjans, D. Lovhaug, and N. Narula, Noninvasive imaging of angiotensin receptors after myocardial infarction, J Am Coll Cardiol Img, vol.1, pp.354-362, 2008.

J. P. Finn, K. Nael, V. Deshpande, O. Ratib, and G. Laub, Cardiac MR imaging: state of the technology, Radiology, vol.241, pp.338-354, 2006.

T. D. Karamitsos, J. M. Francis, S. Myerson, J. B. Selvanayagam, and S. Neubauer, The role of cardiovascular magnetic resonance imaging in heart failure, J Am Coll Cardiol, vol.54, pp.1407-1424, 2009.

L. Iles, H. Pfluger, and A. Phrommintikul, Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping, J Am Coll Cardiol, vol.52, pp.1574-1580, 2008.

A. S. Flett, M. P. Hayward, and M. T. Ashworth, Equilibrum contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans, Circulation, vol.122, pp.138-144, 2010.

D. R. Messroghli, S. Nordmeyer, and T. Dietrich, Assessment of diffuse myocardial fibrosis in rats using small-animal Look-Locker inversion recovery T1 mapping, Circ Cardiovasc Imaging, vol.4, pp.636-640, 2011.

T. D. Scholz, S. R. Fleagle, T. L. Burns, and D. J. Skorton, Nuclear magnetic resonance relaxometry of the normal heart: relationship between collagen content and relaxation times of the four chambers, Magn Reson Imaging, vol.7, pp.643-648, 1989.

M. Grover-mckay, T. D. Scholz, T. L. Burns, and D. J. Skorton, Myocardial collagen concentration and nuclear magnetic resonance relaxation times in the spontaneously hypertensive rat, Invest Radiol, vol.26, pp.227-232, 1991.

T. D. Scholz, T. L. Ceckler, and R. S. Balaban, Magnetization transfer characterization of hypertensive cardiomyopathy: significance of tissue water content, Magn Reson Med, vol.29, pp.352-357, 1993.

P. Sparrow, D. R. Messroghli, S. Reid, J. P. Ridgway, G. Brainbridge et al., Myocardial T1 mapping for detection of left ventricular myocardial fibrosis in chronic aortic regurgitation: pilot study, AJR Am J Roentgenol, vol.187, pp.630-635, 2006.

H. Abdel-aty, O. Simonetti, and M. G. Friedrich, T2-weighted cardiovascular magnetic resonance imaging, J Magn Reson Imaging, vol.26, pp.452-459, 2007.

A. Manrique, E. Gerbaud, and G. Derumeaux, Cardiac magnetic resonance demonstrates myocardial oedema in remote tissue early after reperfused myocardial infarction, Arch Cardiovasc Dis, vol.102, pp.633-639, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00467140

P. Thavendiranathan, M. Walls, and S. Giri, Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping, Circ Cardiovasc Imaging, vol.5, pp.102-110, 2012.

A. Ramazzotti, A. Pepe, and V. Positano, Multicenter validation of the magnetic resonance T2* technique for segmental and global quantification of myocardial iron, J Magn Reson Imaging, vol.30, pp.62-68, 2009.

S. S. Bun, F. Kober, and A. Jacquier, Value of in vivo T2 measurement for myocardial fibrosis assessment in diabetic mice at 11.75 T, Invest Radiol, vol.47, pp.319-323, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00826731

F. Kober, I. Iltis, and M. Izquierdo, High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging, Magn Reson Med, vol.51, pp.62-67, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02119122

S. A. Doggrell and L. Brown, Rat models of hypertension, cardiac hypertrophy and failure, Cardiovasc Res, vol.39, pp.89-105, 1998.

P. Mulder, V. Mellin, and J. Favre, Aldosterone synthase inhibition improves cardiovascular function and structure in rats with heart failure: a comparison with spironolactone, Eur Heart J, vol.29, pp.2171-2179, 2008.

E. Heijman, W. De-graaf, and P. Niessen, Comparison between prospective and retrospective triggering for mouse cardiac MRI, NMR Biomed, vol.20, pp.439-447, 2007.

P. Mulder, S. Barbier, and A. Chagraoui, Long term heart rate reduction induced by the selective l(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure, Circulation, vol.109, pp.1674-1679, 2004.

F. Contard, M. Glukhova, and A. Sabri, Comparative effects of indapamide and hydrochlorothiazide on cardiac hypertrophy and vascular smooth-muscle phenotype in the stroke-prone, spontaneously hypertensive rat, J Cardiovasc Pharmacol, vol.22, issue.6, pp.29-34, 1993.

T. Schlosser, P. Hunold, and C. U. Herborn, Myocardial infarct: depiction with contrast-enhanced MR imaging-comparison of gadopentetate and gadobenate, Radiology, vol.236, pp.1041-1046, 2005.

S. Dass, J. J. Suttie, and S. K. Piechnik, Myocardial tissue characterization using magnetic resonance noncontrast T1 mapping in hypertrophic and dilated cardiomyopathy, Circ Cardiovasc Imaging, vol.5, pp.726-733, 2012.

P. A. Helm, P. Caravan, and B. A. French, Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent, Radiology, vol.247, pp.788-796, 2008.

E. Spuentrup, K. M. Ruhl, and R. M. Botnar, Molecular magnetic resonance imaging of myocardial perfusion with EP-3600, a collagen-specific contrast agent: initial feasibility study in a swine model, Circulation, vol.119, pp.1768-1775, 2009.