S. Banquet, E. Gomez, L. Nicol, F. Edwards-lévy, J. P. Henry et al., Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure, Circulation, vol.124, pp.1059-1069, 2011.

J. Bellien, M. Iacob, R. , I. Lucas, D. Monteil et al., Epoxyeicosatrienoic acids contribute with altered NO and endothelin-1 pathways to conduit artery endothelial dysfunction in essential hypertension, Circulation, vol.125, pp.1266-1275, 2012.

J. Bellien, R. Joannides, V. Richard, and C. Thuillez, Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: a promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases?, Pharmacol Ther, vol.131, pp.1-17, 2011.

S. Boudina and E. D. Abel, Diabetic cardiomyopathy, causes and effects, Rev Endocr Metab Disord, vol.11, pp.31-39, 2010.

B. M. De-taeye, C. Morisseau, J. Coyle, J. W. Covington, A. Luria et al., Expression and regulation of soluble epoxide hydrolase in adipose tissue, Obesity (Silver Spring), vol.18, pp.489-498, 2010.

J. M. Do-carmo, A. A. Da-silva, J. Morgan, J. Wang, Y. X. Munusamy et al., Inhibition of soluble epoxide hydrolase reduces food intake and increases metabolic rate in obese mice, Nutr Metab Cardiovasc Dis, vol.22, pp.598-604, 2012.

E. Fuentes, F. Fuentes, G. Vilahur, L. Badimon, and I. Palomo, Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome, Mediators Inflamm, p.136584, 2013.

J. Gao, J. Bellien, E. Gomez, J. P. Henry, B. Dautreaux et al., Soluble epoxide hydrolase inhibition prevents coronary endothelial dysfunction in mice with renovascular hypertension, J Hypertens, vol.29, pp.1128-1135, 2011.

K. Guglielmino, K. Jackson, T. R. Harris, V. Vu, H. Dong et al., Pharmacological inhibition of soluble epoxide hydrolase provides cardioprotection in hyperglycemic rats, Am J Physiol Heart Circ Physiol, vol.303, pp.853-862, 2012.

S. H. Hwang, H. J. Tsai, J. Y. Liu, C. Morisseau, and B. D. Hammock, Orally bioavailable potent soluble epoxide hydrolase inhibitors, J Med Chem, vol.50, pp.3825-3840, 2007.

A. Iyer, K. Kauter, M. A. Alam, S. H. Hwang, C. Morisseau et al., Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats, Exp Diabetes Res, p.758614, 2012.

, Cardiovascular Consequences of Obesity and Type 2 Diabetes: Soluble

M. Laakso, Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture, Diabetes Care, vol.33, pp.442-449, 2008.

Y. Liu, H. Dang, D. Li, W. Pang, B. D. Hammock et al., Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice, PLoS One, vol.7, p.39165, 2012.

P. Luo, H. H. Chang, Y. Zhou, S. Zhang, S. H. Hwang et al., Inhibition or deletion of soluble epoxide hydrolase prevents hyperglycemia, promotes insulin secretion, and reduces islet apoptosis, J Pharmacol Exp Ther, vol.334, pp.430-438, 2010.

A. Luria, A. Bettaieb, Y. Xi, G. J. Shieh, H. C. Liu et al., Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance, Proc Natl Acad Sci, vol.108, pp.9038-9043, 2011.

B. Ma, X. Xiong, C. Chen, H. Li, X. Xu et al., Cardiacspecific overexpression of CYP2J2 attenuates diabetic cardiomyopathy in male streptozotocin-induced diabetic mice, Endocrinology, vol.154, pp.2843-2856, 2013.

T. Mazzone, A. Chait, and J. Plutzky, Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies, Lancet, vol.371, pp.1800-1809, 2008.

N. Merabet, J. Bellien, E. Glevarec, L. Nicol, D. Lucas et al., Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure, J Mol Cell Cardiol, vol.52, pp.660-666, 2012.

A. W. Miller, C. Dimitropoulou, G. Han, R. E. White, D. W. Busija et al., Epoxyeicosatrienoic acidinduced relaxation is impaired in insulin resistance, Am J Physiol Heart Circ Physiol, vol.281, pp.1524-1531, 2001.

C. Morisseau and B. D. Hammock, Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health, Annu Rev Pharmacol Toxicol, vol.53, pp.37-58, 2013.

G. Perriello, S. Pampanelli, D. Sindaco, P. Lalli, C. Ciofetta et al., Evidence of increased systemic glucose production and gluconeogenesis in an early stage of NIDDM, Diabetes, vol.46, pp.1010-1016, 1997.

C. E. Tabit, W. B. Chung, N. M. Hamburg, and J. A. Vita, Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications, Rev Endocr Metab Disord, vol.11, pp.61-74, 2010.

N. Tandon, M. K. Ali, and K. M. Narayan, Pharmacologic prevention of microvascular and macrovascular complications in diabetes mellitus: implications of the results of recent clinical trials in type 2 diabetes, Am J Cardiovasc Drugs, vol.12, pp.7-22, 2012.

X. Xu, C. X. Zhao, L. Wang, L. Tu, X. Fang et al., Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice, Diabetes, vol.59, pp.997-1005, 2010.

L. N. Zhang, J. Vincelette, D. Chen, R. D. Gless, S. K. Anandan et al., Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension, Eur J Pharmacol, vol.654, pp.68-74, 2011.

X. Zhao, A. Dey, O. P. Romanko, D. W. Stepp, M. H. Wang et al., Decreased epoxygenase and increased epoxide hydrolase expression in the mesenteric artery of obese Zucker rats, Am J Physiol Regul Integr Comp Physiol, vol.288, pp.188-196, 2005.

, Cardiovascular Consequences of Obesity and Type 2 Diabetes: Soluble

, A: mean values and representative recordings), inhibitory effect of N -nitro--arginine ( -NA), N-methylsulfonyl-6-(2-propargyloxyphenyl)-hexanamide (MSPPOH), -NA + MSPPOH, and apamin + TRAM34 on the relaxations to 3 × 10 M acetylcholine (B), endothelium-independent relaxations to sodium nitroprusside (C), and relaxations to NS309 (D) and NS1619 (E), at W16 in control mice, Coronary endothelium-dependent relaxations to acetylcholine (ACh) after vessel contraction with 10 M serotonin (HT) under basal conditions

. *p-<,

, ?P < 0.05, HFD + t-AUCB vs

, ?P < 0.05, HFD + t-AUCB vs

, §P < 0.05, -NA vs

, Cardiovascular Consequences of Obesity and Type 2 Diabetes: Soluble

, Western-blot analysis of left descending coronary artery protein expressions of endothelial nitric oxide synthase (eNOS), soluble epoxide hydrolase (sEH), and large-conductance calcium-activated potassium (BK ) channels, normalized to smooth muscle actin at W16 in control mice (n = 6-8)

, Cardiovascular Consequences of Obesity and Type 2 Diabetes: Soluble