P. Coppo and A. Veyradier, Thrombotic microangiopathies: towards a pathophysiology-based classification, Cardiovasc Hematol Disord Drug Targets, vol.9, pp.36-50, 2009.

H. Tsai, Autoimmune thrombotic microangiopathy: advances in pathogenesis, diagnosis, and management, Semin Thromb Hemost, vol.38, pp.469-82, 2012.

G. G. Levy, W. C. Nichols, E. C. Lian, T. Foroud, J. N. Mcclintick et al., Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura, Nature, vol.413, pp.488-94, 2001.

D. Motto, Endothelial cells and thrombotic microangiopathy, Semin Nephrol, vol.32, pp.208-222, 2012.

A. K. Chauhan, M. T. Walsh, G. Zhu, D. Ginsburg, D. D. Wagner et al., The combined roles of ADAMTS13 and VWF in murine models of TTP, endotoxemia, and thrombosis, Blood, vol.111, pp.3452-3459, 2008.

D. G. Motto, A. K. Chauhan, G. Zhu, J. Homeister, C. B. Lamb et al., Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice, J Clin Invest, vol.115, pp.2752-61, 2005.

A. Schiviz, K. Wuersch, C. Piskernik, B. Dietrich, W. Hoellriegl et al., A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13, Blood, vol.119, pp.6128-6163, 2012.

A. Widemann, C. Pasero, L. Arnaud, P. Poullin, A. D. Loundou et al., Circulating endothelial cells and progenitors as prognostic factors during autoimmune thrombotic thrombocytopenic purpura: results of a prospective multicenter French study, J Thromb Haemost, vol.12, pp.1601-1610, 2014.

G. A. Hosler, A. M. Cusumano, and G. M. Hutchins, Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are distinct pathologic entities. A review of 56 autopsy cases, Arch Pathol Lab Med, vol.127, pp.834-843, 2003.

R. L. Ridolfi, G. M. Hutchins, and W. R. Bell, The heart and cardiac conduction system in thrombotic thrombocytopenic purpura. A clinicopathologic study of 17 autopsied patients, Ann Intern Med, vol.91, pp.357-63, 1979.

R. L. Ridolfi and W. R. Bell, Report of 25 cases and review of the literature. Medicine (Baltimore), vol.60, pp.413-441, 1981.

M. Scully, V. Mcdonald, J. Cavenagh, B. J. Hunt, I. Longair et al., A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura, Blood, vol.11, pp.1746-53, 2011.

A. Froissart, M. Buffet, A. Veyradier, P. Poullin, F. Provôt et al., Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French thrombotic microangiopathies reference center, French Thrombotic Microangiopathies Reference Center, vol.40, pp.104-115, 2012.

Y. Benhamou, P. Boelle, B. Baudin, S. Ederhy, J. Gras et al., Cardiac troponin-I on diagnosis predicts early death and refractoriness in acquired thrombotic thrombocytopenic purpura. Experience of the French thrombotic microangiopathies reference center, J Thromb Haemost, vol.13, pp.293-302, 2015.

Y. Benhamou, C. Assi-e, P. Boelle, M. Buffet, R. Grillberger et al., Development and validation of a predictive model for death in acquired severe ADAMTS13 deficiency-associated idiopathic thrombotic thrombocytopenic purpura: the French TMA Reference Center experience, Thrombotic Microangiopathies Reference Center, vol.97, pp.1181-1187, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00700485

G. A. Rock, K. H. Shumak, N. A. Buskard, V. S. Blanchette, J. G. Kelton et al., Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group, N Engl J Med, vol.325, pp.393-400, 1991.

W. R. Bell, H. G. Braine, P. M. Ness, and T. S. Kickler, Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients, N Engl J Med, vol.325, pp.398-403, 1991.

J. N. George, Thrombotic thrombocytopenic purpura, N Engl J Med, vol.354, pp.1927-1962, 2006.

P. Coppo, M. Schwarzinger, M. Buffet, A. Wynckel, K. Clabault et al., Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the French TMA reference center experience, PLoS ONE, vol.5, p.10208, 2010.

B. M. Hawkins, M. Abu-fadel, S. K. Vesely, and J. N. George, Clinical cardiac involvement in thrombotic thrombocytopenic purpura: a systematic review, Transfusion (Paris), vol.48, pp.382-92, 2008.

P. D. Siersema, J. M. Kros, and B. Van-den-berg, Cardiac manifestations of thrombotic thrombocytopenic purpura, Neth J Med, vol.35, pp.100-107, 1989.

A. S. Gami, S. R. Hayman, J. P. Grande, and V. D. Garovic, Incidence and prognosis of acute heart failure in the thrombotic microangiopathies, Am J Med, vol.118, pp.544-551, 2005.

K. Gandhi, W. S. Aronow, H. Desai, H. Amin, M. Sharma et al., Cardiovascular manifestations in patients with thrombotic thrombocytopenic purpura: a single-center experience, Clin Cardiol, vol.33, pp.213-229, 2010.

C. Hughes, J. R. Mcewan, I. Longair, S. Hughes, H. Cohen et al., Cardiac involvement in acute thrombotic thrombocytopenic purpura: association with troponin T and IgG antibodies to ADAMTS 13, J Thromb Haemost, vol.7, pp.529-565, 2009.

J. Maupoint, M. Besnier, E. Gomez, N. Bouhzam, J. P. Henry et al., Selective vascular endothelial protection reduces cardiac dysfunction in chronic heart failure, Circ Heart Fail, vol.9, p.2895, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02296623

K. Kokame, Y. Nobe, Y. Kokubo, A. Okayama, and T. Miyata, FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay, Br J Haematol, vol.129, pp.93-100, 2005.

C. Denis, N. Methia, P. S. Frenette, H. Rayburn, M. Ullman-culler-e et al., A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis, Proc Natl Acad Sci, vol.95, pp.9524-9533, 1998.

E. Gomez, M. Vercauteren, B. Kurtz, A. Ouvrard-pascaud, P. Mulder et al., Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B, J Mol Cell Cardiol, vol.52, pp.1257-64, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00801304

S. Banquet, E. Gomez, L. Nicol, F. Edwards-l-evy, J. Henry et al., Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure, Circulation, vol.124, pp.1059-69, 2011.

N. Merabet, J. Bellien, E. Glevarec, L. Nicol, D. Lucas et al., Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure, J Mol Cell Cardiol, vol.52, pp.660-666, 2012.

M. Besnier, A. Galaup, L. Nicol, J. Henry, D. Coquerel et al., Enhanced angiogenesis and increased cardiac perfusion after myocardial infarction in protein tyrosine phosphatase 1B-deficient mice, FASEB J, vol.28, pp.3351-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02142777

W. R. Bauer, K. H. Hiller, F. Roder, E. Rommel, G. Ertl et al., Magnetization exchange in capillaries by microcirculation affects diffusion-controlled spin-relaxation: a model which describes the effect of perfusion on relaxation enhancement by intravascular contrast agents, Magn Reson Med, vol.35, pp.43-55, 1996.

F. Kober, I. Iltis, M. Izquierdo, M. Desrois, D. Ibarrola et al., High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging, Magn Reson Med, vol.51, pp.62-69, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02119122

Y. Benhamou, J. Bellien, G. Armengol, E. Brakenhielm, S. Adriouch et al., Joannid es R. Role of Toll-like receptors 2 and 4 in mediating endothelial dysfunction and arterial remodeling in primary arterial antiphospholipid syndrome, Arthritis Rheumatol, vol.66, pp.3210-3230, 2014.

J. Favre, P. Musette, V. Douin-echinard, K. Laude, J. Henry et al., Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction, Arterioscler Thromb Vasc Biol, vol.27, pp.1064-71, 2007.

V. Richard, M. Hogie, M. Clozel, B. M. L?-offler, and C. Thuillez, In vivo evidence of an endothelin-induced vasopressor tone after inhibition of nitric oxide synthesis in rats, Circulation, vol.91, pp.771-776, 1995.

L. Nichols, A. Berg, M. A. Rollins-raval, and J. S. Raval, Cardiac injury is a common postmortem finding in thrombotic thrombocytopenic purpura patients: is empiric cardiac monitoring and protection needed?, Ther Apher Dial, vol.19, pp.87-92, 2015.

H. B. Feys, J. Roodt, N. Vandeputte, I. Pareyn, S. Lamprecht et al., Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus), Blood, vol.116, pp.2005-2015, 2010.

D. Patschan, O. Witzke, U. D?-uhrsen, R. Erbel, T. Philipp et al., Acute myocardial infarction in thrombotic microangiopathies -clinical characteristics, risk factors and outcome, Nephrol Dial Transplant, vol.21, pp.1549-54, 2006.

D. Mitra, E. A. Jaffe, B. Weksler, K. A. Hajjar, C. Soderland et al., Thrombotic thrombocytopenic purpura and sporadic hemolytic-uremic syndrome plasmas induce apoptosis in restricted lineages of human microvascular endothelial cells, Blood, vol.89, pp.1224-1258, 1997.

D. Coquerel, R. Neviere, E. Delile, P. Mulder, X. Marechal et al., Gene deletion of protein tyrosine phosphatase 1B protects against sepsis-induced cardiovascular dysfunction and mortality, Arterioscler Thromb Vasc Biol, vol.34, pp.1032-1076, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02296639

R. Varin, P. Mulder, F. Tamion, V. Richard, J. P. Henry et al., Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure: role of nitric oxide, prostanoids, oxidant stress, and bradykinin, Circulation, vol.102, pp.351-357, 2000.

L. P. Mcquillan, G. K. Leung, P. A. Marsden, and S. K. Kostyk, Kourembanas S. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms, Am J Physiol, vol.267, pp.1921-1928, 1994.

F. Vinchi, D. Franceschi, L. Ghigo, A. Townes, T. Cimino et al., Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases, Circulation, vol.127, pp.1317-1346, 2013.

F. Tamion, V. Richard, G. Bonmarchand, J. Leroy, J. P. Lebreton et al., Induction of heme-oxygenase-1 prevents the systemic responses to hemorrhagic shock, Am J Respir Crit Care Med, vol.164, pp.1933-1941, 2001.

S. M. Keyse, L. A. Applegate, Y. Tromvoukis, and R. M. Tyrrell, Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts, Mol Cell Biol, vol.10, pp.4967-4976, 1990.

S. M. Keyse and R. M. Tyrrell, Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite, Proc Natl Acad Sci, vol.86, pp.99-103, 1989.

A. L. Nascimento, P. Luscher, and R. M. Tyrrell, Ultraviolet A (320-380 nm) radiation causes an alteration in the binding of a specific protein/protein complex to a short region of the promoter of the human heme oxygenase 1 gene, Nucleic Acids Res, vol.21, pp.1103-1112, 1993.

S. K. Bains, R. Foresti, J. Howard, S. Atwal, C. J. Green et al., Human sickle cell blood modulates endothelial heme oxygenase activity: effects on vascular adhesion and reactivity, Arterioscler Thromb Vasc Biol, vol.30, pp.305-317, 2010.

F. T. Billings, . Iv, F. T. Billings, C. Yu, J. G. Byrne et al., Pretorius M. Heme oxygenase-1 and acute kidney injury following cardiac surgery, Cardiorenal Med, vol.4, pp.12-21, 2014.

K. K. Griendling, D. Sorescu, B. Lass-egue, and M. Ushio-fukai, Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology, Arterioscler Thromb Vasc Biol, vol.20, pp.2175-83, 2000.

B. Lass-egue, S. Mart-in, A. Griendling, and K. K. , Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system, Circ Res, vol.110, pp.1364-90, 2012.

R. J. Bache and Y. Chen, NOX2-induced myocardial fibrosis and diastolic dysfunction: role of the endothelium, J Am Coll Cardiol, vol.63, pp.2742-2746, 2014.

U. Landmesser, S. Spiekermann, S. Dikalov, H. Tatge, R. Wilke et al., Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase, Circulation, vol.106, pp.3073-3081, 2002.

M. W. Radomski, R. M. Palmer, and S. Moncada, The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide, Br J Pharmacol, vol.92, pp.639-685, 1987.

S. K. Lee, J. H. Kim, W. S. Yang, S. B. Kim, S. Park et al., Exogenous nitric oxide inhibits VCAM-1 expression in human peritoneal mesothelial cells. Role of cyclic GMP and NF-kappaB, Nephron, vol.90, pp.447-54, 2002.

J. J. Jimenez, W. Jy, L. M. Mauro, L. L. Horstman, and Y. S. Ahn, Elevated endothelial microparticles in thrombotic thrombocytopenic purpura: findings from brain and renal microvascular cell culture and patients with active disease, Br J Haematol, vol.112, pp.81-90, 2001.

B. Sontia, A. Montezano, T. Paravicini, F. Tabet, and R. M. Touyz, Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: effects of magnesium, Hypertension, vol.51, pp.915-936, 2008.

C. Justicia, A. Mart-in, S. Rojas, M. Gironella, A. Cervera et al., Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice, J Cereb Blood Flow Metab, vol.26, pp.421-453, 2006.