P. W. Moxey, D. Hofman, and R. J. Hinchliffe, Epidemiological study of lower limb amputation in England between, Br J Surg, vol.97, pp.1348-1353, 2003.

T. Dinh, F. Tecilazich, and A. Kafanas, Mechanisms involved in the development and healing of diabetic foot ulceration, Diabetes, vol.61, pp.2937-2947, 2012.

C. Y. Chao and G. L. Cheing, Microvascular dysfunction in diabetic foot disease and ulceration, Diabetes Metab Res Rev, vol.25, pp.604-614, 2009.

S. Jhamb, V. N. Vangaveti, and U. H. Malabu, Genetic and molecular basis of diabetic foot ulcers: clinical review, J Tissue Viability, vol.25, pp.229-236, 2016.

G. Valacchi, I. Zanardi, and C. Sticozzi, Emerging topics in cutaneous wound repair, Ann N Y Acad Sci, vol.1259, pp.136-144, 2012.

A. Lorthioir, D. Guerrot, and R. Joannides, Diabetic cardiovascular disease -soluble epoxide hydrolase as a target, Cardiovasc Hematol Agents Med Chem, vol.10, pp.212-222, 2012.

J. Bellien, R. Joannides, and V. Richard, Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: a promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases?, Pharmacol Ther, vol.131, pp.1-17, 2011.

H. Zhao, J. Chen, and J. Chai, Cytochrome P450 (CYP) epoxygenases as potential targets in the management of impaired diabetic wound healing, Lab Invest, vol.97, pp.782-791, 2017.

A. L. Sander, J. H. Sommer, and K. , Cytochrome P450-derived epoxyeicosatrienoic acids accelerate wound epithelialization and neovascularization in the hairless mouse ear wound model, Langenbecks Arch Surg, vol.396, pp.1245-1253, 2011.

A. L. Sander, K. Sommer, and T. Neumayer, Soluble epoxide hydrolase disruption as therapeutic target for wound healing, J Surg Res, vol.182, pp.362-367, 2013.

C. Roche, M. Besnier, and R. Cassel, Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulin-resistant mice, Am J Physiol Heart Circ Physiol, vol.308, pp.1020-1029, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01850659

L. N. Zhang, J. Vincelette, and D. Chen, Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension, Eur J Pharmacol, vol.654, pp.68-74, 2011.

J. Y. Liu, H. J. Tsai, and S. H. Hwang, Pharmacokinetic optimization of four soluble epoxide hydrolase inhibitors for use in a murine model of inflammation, Br J Pharmacol, vol.156, pp.284-296, 2009.

M. Roustit and J. L. Cracowski, Assessment of endothelial and neurovascular function in human skin microcirculation, Trends Pharmacol Sci, vol.34, pp.373-384, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00851114

B. Godin and E. Touitou, Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models, Adv Drug Deliv Rev, vol.59, pp.1152-1161, 2007.

C. Herkenne, A. Naik, and Y. N. Kalia, Pig ear skin ex vivo as a model for in vivo dermatopharmacokinetic studies in man, Pharm Res, vol.23, pp.1850-1856, 2006.

E. Abd, S. A. Yousef, and M. N. Pastore, Skin models for the testing of transdermal drugs, Clin Pharmacol, vol.8, pp.163-176, 2016.

V. E. Brunt and C. T. Minson, KCa channels and epoxyeicosatrienoic acids: major contributors to thermal hyperaemia in human skin, J Physiol, vol.590, pp.3523-3534, 2012.

C. Schaefer, T. Biermann, and M. Schroeder, Early microvascular complications of prediabetes in mice with impaired glucose tolerance and dyslipidemia, Acta Diabetol, vol.47, pp.19-27, 2010.

D. Fuchs, P. P. Dupon, and L. A. Schaap, The association between diabetes and dermal microvascular dysfunction non-invasively assessed by laser Doppler with local thermal hyperemia: a systematic review with meta-analysis, Cardiovasc Diabetol, vol.16, p.11, 2017.

T. Kaneda, N. Sasaki, and N. Urakawa, Endotheliumdependent and -independent vasodilator effects of dimethyl sulfoxide in rat aorta, Pharmacology, vol.97, pp.171-176, 2016.

A. L. Scherbel, The effect of percutaneous dimethyl sulfoxide on cutaneous manifestations of systemic sclerosis, Ann N Y Acad Sci, vol.411, pp.120-130, 1983.

H. J. Williams, D. E. Furst, and S. L. Dahl, Double-blind, multicenter controlled trial comparing topical dimethyl sulfoxide and normal saline for treatment of hand ulcers in patients with systemic sclerosis, Arthritis Rheum, vol.28, pp.308-314, 1985.

S. R. Sullivan, R. A. Underwood, and N. S. Gibran, Validation of a model for the study of multiple wounds in the diabetic mouse (db/db), Plast Reconstr Surg, vol.113, pp.953-960, 2004.

D. Chen, R. Whitcomb, and E. Macintyre, Pharmacokinetics and pharmacodynamics of AR9281, an inhibitor of soluble epoxide hydrolase, in single-and multiple-dose studies in healthy human subjects, J Clin Pharmacol, vol.52, pp.319-328, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00616998

A. L. Lazaar, L. Yang, and R. L. Boardley, Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibitor, Br J Clin Pharmacol, vol.81, pp.971-979, 2016.

D. Panigrahy, M. L. Edin, and C. R. Lee, Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice, J Clin Invest, vol.122, pp.178-191, 2012.

L. N. Sausville, M. Gangadhariah, and M. Chiusa, The cytochrome P450 slow metabolizers CYP2C9*2 and CYP2C9*3 directly regulate tumorigenesis via reduced epoxyeicosatrienoic acid production, Cancer Res, vol.78, pp.4865-4877, 2018.