Y. Cao, J. Arbiser, D. 'amato, R. J. , D. 'amore et al., Forty-year journey of angiogenesis translational research, Science Translational Medicine, vol.3, pp.114-117, 2011.

R. J. Kant and K. Coulombe, Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues, Acta Biomaterialia, pp.69-111, 2018.

P. Carrabba-m-&-madeddu, Current strategies for the manufacture of small size tissue engineering vascular grafts, Frontiers in Bioengineering and Biotechnology, vol.6, p.41, 2018.

J. Halcox, W. H. Schenke, G. Zalos, R. Mincemoyer, A. Prasad et al., Prognostic value of coronary vascular endothelial dysfunction, Circulation, vol.106, pp.653-658, 2002.

G. Eelen, P. De-zeeuw, M. Simons, and P. Carmeliet, Endothelial cell metabolism in normal and diseased vasculature, Circulation Research, vol.116, pp.1231-1244, 2015.

U. Förstermann, Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies, Nature Clinical Practice. Cardiovascular Medicine, vol.5, pp.338-349, 2008.

Y. Higashi, T. Maruhashi, N. K. Kihara, and Y. , Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications, Trends in Cardiovascular Medicine, vol.2014, pp.24-165

D. Ziegler, Type 2 diabetes as an inflammatory cardiovascular disorder, Current Molecular Medicine, vol.5, pp.309-322, 2005.

Y. Shao, Z. Cheng, X. Li, V. Chernaya, H. Wang et al., Immunosuppressive/anti-inflammatory cytokines directly and indirectly inhibit endothelial dysfunction--a novel mechanism for maintaining vascular function, Journal of Hematology and Oncology, vol.7, p.80, 2014.

A. J. Donato, R. G. Morgan, A. E. Walker, and L. A. Lesniewski, Cellular and molecular biology of aging endothelial cells, Journal of Molecular and Cellular Cardiology, vol.2015, pp.89-122

E. Chou, I. Suzuma, K. J. Way, D. Opland, A. C. Clermont et al., Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue, Circulation, pp.105-373, 2002.

F. C. Sasso, D. Torella, O. Carbonara, G. M. Ellison, M. Torella et al., Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease, Journal of the American College of Cardiology, vol.46, pp.827-834, 2005.

S. Das, G. Singh, and A. B. Baker, Overcoming disease-induced growth factor resistance in therapeutic angiogenesis using recombinant co-receptors delivered by a liposomal system, Biomaterials, vol.2014, pp.35-196

X. Wang, S. M. Lockhart, T. Rathjen, H. Albadawi, D. Sørensen et al., Insulin downregulates the transcriptional coregulator CITED2, an inhibitor of proangiogenic function in endothelial cells, Diabetes, vol.65, pp.3680-3690, 2016.

V. C. Mehra, J. E. Zhang, X. M. Jiang, X. C. Dobrucki, L. W. Yu et al., Ceramideactivated phosphatase mediates fatty acid-induced endothelial VEGF resistance and impaired angiogenesis, American Journal of Pathology, vol.184, pp.1562-1576, 2014.

F. Corti and M. Simons, Modulation of VEGF receptor 2 signaling by protein phosphatases, Pharmacological Research, vol.2017, pp.115-107

M. Boodhwani, N. R. Sodha, S. Mieno, S. H. Xu, J. Feng et al., Clements RT & Sellke FW. Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia in diabetes, Circulation, pp.116-147, 2007.

N. Sawada and Z. Arany, Metabolic regulation of angiogenesis in diabetes and aging, Physiology, vol.32, pp.290-307, 2017.

D. M. Hyman, B. S. Taylor, and J. Baselga, Implementing genome-driven oncology, Cell, vol.2017, pp.168-584

K. G. Shyu, H. Chang, and J. M. Isner, Synergistic effect of angiopoietin-1 and vascular endothelial growth factor on neoangiogenesis in hypercholesterolemic rabbit model with acute hindlimb ischemia, Life Sciences, issue.03, pp.318-325, 2003.

H. Koike, R. Morishita, S. Iguchi, M. Aoki, K. Matsumoto et al., Enhanced angiogenesis and improvement of neuropathy by cotransfection of human hepatocyte growth factor and prostacyclin synthase gene, FASEB Journal, pp.17-779, 2003.

M. B. Salis, G. Graiani, E. Desortes, R. B. Caldwell, P. Madeddu et al., Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice, Diabetologia, vol.47, pp.1055-1063, 2004.

S. M. Samuel, Y. Akita, D. Paul, M. Thirunavukkarasu, L. Zhan et al., Coadministration of adenoviral vascular endothelial growth factor and angiopoietin-1 enhances vascularization and reduces ventricular remodeling in the infarcted myocardium of type 1 diabetic rats, Diabetes, vol.59, pp.51-60, 2010.

E. M. Anderson, E. A. Silva, Y. Hao, K. D. Martinick, S. A. Vermillion et al., VEGF and IGF delivered from alginate hydrogels promote stable perfusion recovery in ischemic hind limbs of aged mice and young rabbits, Journal of Vascular Research, vol.54, pp.288-298, 2017.

M. Boodhwani and F. W. Sellke, Therapeutic angiogenesis in diabetes and hypercholesterolemia: influence of oxidative stress. Antioxidants and Redox Signaling, 1945.

A. Bollinger, J. Frey, K. Jäger, J. Furrer, J. Seglias et al., Patterns of diffusion through skin capillaries in patients with longterm diabetes, New England Journal of Medicine, vol.1982, pp.307-1305

G. Mangialardi, R. Katare, A. Oikawa, M. Meloni, C. Reni et al., Diabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-Rho-associated kinase signaling pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, pp.33-555, 2013.

M. Simons and J. A. Ware, Therapeutic angiogenesis in cardiovascular disease, Nature Reviews. Drug Discovery, vol.2, pp.863-871, 2003.

S. Ylä-herttuala, C. Bridges, M. G. Katz, and P. Korpisalo, Angiogenic gene therapy in cardiovascular diseases: dream or vision?, European Heart Journal, vol.38, pp.1365-1371, 2017.

P. Carmeliet and E. M. Conway, Growing better blood vessels, Nature Biotechnology, pp.19-1019, 2001.

B. H. Annex and M. Simons, Growth factor-induced therapeutic angiogenesis in the heart: protein therapy, Cardiovascular Research, pp.65-649, 2005.

J. E. Markkanen, T. T. Rissanen, A. Kivelä, and S. Ylä-herttuala, Growth factor-induced therapeutic angiogenesis and arteriogenesis in the heart--gene therapy, Cardiovascular Research, pp.65-656, 2005.

T. T. Rissanen and S. Ylä-herttuala, Current status of cardiovascular gene therapy, Molecular Therapy, vol.15, pp.1233-1247, 2007.

R. J. Lee, M. L. Springer, W. E. Blanco-bose, R. Shaw, P. C. Ursell et al., VEGF gene delivery to myocardium: deleterious effects of unregulated expression, Circulation, vol.102, pp.898-901, 2000.

A. S. Mao and D. J. Mooney, Regenerative medicine: current therapies and future directions, PNAS, vol.2015, pp.112-14452

A. Banfi, G. Von-degenfeld, R. Gianni-barrera, S. Reginato, M. J. Merchant et al., Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB, FASEB Journal, vol.2012, pp.26-2486

R. Gianni-barrera, M. Burger, T. Wolff, M. Heberer, D. J. Schaefer et al., Long-term safety and stability of angiogenesis induced by balanced single-vector co-expression of PDGF-BB and VEGF164 in skeletal muscle, Scientific Reports, 20166.

T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney, Polymeric system for dual growth factor delivery, Nature Biotechnology, pp.19-1029, 2001.

R. Cao, E. Bråkenhielm, R. Pawliuk, D. Wariaro, M. J. Post et al., Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2, Nature Medicine, pp.9-604, 2003.

S. Banquet, E. Gomez, L. Nicol, F. Edwards-lévy, J. P. Henry et al., Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure, Circulation, vol.124, pp.1059-1069, 2011.

H. Lu, X. Xu, M. Zhang, R. Cao, E. Bråkenhielm et al., Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs, vol.104, pp.12140-12145, 2007.

A. Rayssac, C. Neveu, M. Pucelle, L. Van-den-berghe, L. Prado-lourenco et al., IRES-based vector coexpressing FGF2 and Cyr61 provides synergistic and safe therapeutics of lower limb ischemia, Molecular Therapy, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00419435

K. Kuku?a, L. Chojnowska, M. D?browski, A. Witkowski, Z. Chmielak et al., Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD), American Heart Journal, pp.161-581, 2011.

R. Khurana and M. Simons, Endothelial progenitor cells: precursors for angiogenesis, Seminars in Thoracic and Cardiovascular Surgery, vol.15, pp.250-258, 2003.

J. S. Silvestre and . Pro, Angiogenic cell-based therapy for the treatment of ischemic cardiovascular diseases, Thrombosis Research, p.130, 2012.

C. M. Boulanger, X. Loyer, P. E. Rautou, and N. Amabile, Extracellular vesicles in coronary artery disease, Nature Reviews. Cardiology, vol.14, pp.259-272, 2017.

J. A. Dougherty, M. Mergaye, N. Kumar, C. A. Chen, M. G. Angelos et al., Potential role of exosomes in mending a broken heart: nanoshuttles propelling future clinical therapeutics forward. Stem Cells International, 2017.

R. P. Juni, R. C. Abreu, C. Da, and P. A. Martins, Regulation of microvascularization in heart failure -an endothelial cell, noncoding RNAs and exosome liaison. Non-Coding RNA Research, vol.2, pp.45-55, 2017.

J. Sluijter, S. M. Davidson, C. M. Boulanger, E. I. Buzás, D. De-kleijn et al., Extracellular vesicles in diagnostics and therapy of the ischaemic heart: position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology, Cardiovascular Research, pp.114-133, 2018.

J. Halkein, S. P. Tabruyn, M. Ricke-hoch, A. Haghikia, N. Q. Nguyen et al., MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy, Journal of Clinical Investigation, vol.123, pp.2143-2154, 2013.

L. Barile, V. Lionetti, E. Cervio, M. Matteucci, M. Gherghiceanu et al., Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction, Cardiovascular Research, pp.103-530, 2014.

R. Gallet, J. Dawkins, J. Valle, E. Simsolo, G. De-couto et al., Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction, European Heart Journal, vol.2017, pp.38-201

T. Chang, Therapeutic applications of polymeric artificial cells, Nature Reviews Drug Discovery, vol.4, pp.221-235, 2005.

K. Alitalo, T. Tammela, and T. V. Petrova, Lymphangiogenesis in development and human disease, Nature, vol.438, pp.946-953, 2005.

O. Henri, C. Pouehe, M. Houssari, L. Galas, L. Nicol et al., Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction, Circulation, vol.2016, pp.133-1484
URL : https://hal.archives-ouvertes.fr/inserm-02296561

F. Tatin, E. Renaud-gabardos, A. C. Godet, F. Hantelys, F. Pujol et al., Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction, JCI Insight, 20172.

K. Brakenhielm-e-&-alitalo, Cardiac lymphatics in health and disease, Nature Reviews Cardiology, vol.2019, pp.16-56

J. Hartikainen, I. Hassinen, A. Hedman, A. Kivelä, A. Saraste et al., Adenoviral intramyocardial VEGF-D?N?C gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up, European Heart Journal, vol.38, pp.2547-2555, 2017.

A. Anisimov, A. Alitalo, P. Korpisalo, J. Soronen, S. Kaijalainen et al., Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle, Circulation Research, vol.104, pp.1302-1312, 2009.

J. K. Chae, I. Kim, S. T. Lim, M. J. Chung, W. H. Kim et al., Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization

T. Arteriosclerosis and V. Biology, , 2573.

A. M. Cimpean, E. Seclaman, R. Ceau?u, P. Gaje, S. Feflea et al., /HGF induce Prox-1 expression in the chick embryo chorioallantoic membrane lymphatic vasculature, Clinical and Experimental Medicine, vol.10, pp.169-172, 2010.