C. Kalka, H. Masuda, and T. Takahashi, Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization, Proc Natl Acad Sci U S A, vol.97, p.3422, 2000.

R. W. Sprengers, D. J. Lips, and F. L. Moll, Progenitor cell therapy in patients with critical limb ischemia without surgical options, Ann Surg, vol.247, p.411, 2008.

H. M. Klein, A. Ghodsizad, and R. Marktanner, Intramyocardial implantation of CD133þ stem cells improved cardiac function without bypass surgery, Heart Surg Forum, vol.10, p.66, 2007.

C. Stamm, H. D. Kleine, and Y. H. Choi, Intramyocardial delivery of CD133þ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: Safety and efficacy studies, J Thorac Cardiovasc Surg, vol.133, p.717, 2007.

C. Kalka, H. Tehrani, and B. Laudenberg, VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease, Ann Thorac Surg, vol.70, p.829, 2000.

F. M. Rauscher, P. J. Goldschmidt-clermont, and B. H. Davis, Aging, progenitor cell exhaustion, and atherosclerosis, Circulation, vol.108, p.457, 2003.

D. M. Smadja, A. Cornet, and J. Emmerich, Endothelial progenitor cells: Characterization, in vitro expansion, and prospects for autologous cell therapy, Cell Biol Toxicol, vol.23, p.223, 2007.

M. Rahmani, R. P. Cruz, and D. J. Granville, Allograft vasculopathy versus atherosclerosis, Circ Res, vol.99, p.801, 2006.

M. Weiss, V. Scheidt, and W. , Cardiac allograft vasculopathy: A review, Circulation, vol.96, p.2069, 1997.

Y. Hu, F. Davison, and B. Ludewig, Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells, Circulation, vol.106, p.1834, 2002.

E. L. Lagaaij, G. F. Cramer-knijnenburg, and F. J. Van-kemenade, Endothelial cell chimerism after renal transplantation and vascular rejection, Lancet, vol.357, p.33, 2001.

J. L. Hillebrands, F. A. Klatter, and B. M. Van-den-hurk, Origin of neointimal endothelium and a-actin-positive smooth muscle cells in transplant arteriosclerosis, J Clin Invest, vol.107, p.1411, 2001.

Y. Hu, F. Davison, and Z. Zhang, Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells, Circulation, vol.108, p.3122, 2003.

D. W. Ii-mlosordo, Transplant graft vasculopathy: A dark side of bone marrow stem cells?, Circulation, vol.108, p.3056, 2003.

M. Sata, Circulating vascular progenitor cells contribute to vascular repair, remodeling, and lesion formation, Trends Cardiovasc Med, vol.13, p.249, 2003.

, JOURNAL OF SURGICAL RESEARCH, vol.176, issue.2, 2012.

B. Alkhatib, C. Freguin-bouilland, and F. Lallemand, Low molecular weight fucan prevents transplant coronaropathy in rat cardiac allograft model, Transpl Immunol, vol.16, p.14, 2006.

C. Freguin-bouilland, B. Alkhatib, and N. David, Low molecular weight fucoidan prevents neointimal hyperplasia after aortic allografting, Transplantation, vol.83, p.1234, 2007.

M. A. Moore, K. Hattori, and B. Heissig, Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovectormediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1, Ann N Y Acad Sci, vol.938, p.36, 2001.

J. Yamaguchi, K. F. Kusano, and O. Masuo, Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization, Circulation, vol.107, p.1322, 2003.

F. X. Ma and Z. C. Han, Statins, nitric oxide and neovascularization, Cardiovasc Drug Rev, vol.23, p.281, 2005.

D. H. Walter, K. Rittig, and F. H. Bahlmann, Statin therapy accelerates reendothelialization: A novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells, Circulation, vol.105, p.3017, 2002.

J. Llevadot, S. Murasawa, and Y. Kureishi, HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells, J Clin Invest, vol.108, p.399, 2001.

S. Dimmeler and A. M. Zeiher, Vascular repair by circulating endothelial progenitor cells: The missing link in atherosclerosis?, J Mol Med, vol.82, p.671, 2004.

H. E. Broxmeyer, C. M. Orschell, and D. W. Clapp, Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist, J Exp Med, vol.201, p.1307, 2005.

Y. Yin, L. Huang, and X. Zhao, AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell-derived factor-1 in vitro, J Cardiovasc Pharmacol, vol.50, p.61, 2007.

B. J. Capoccia, R. M. Shepherd, and D. C. Link, G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism, Blood, vol.108, p.2438, 2006.

C. Dambrin, D. Calise, and M. T. Pieraggi, Orthotopic aortic transplantation in mice: A new model of allograft arteriosclerosis, J Heart Lung Transplant, vol.18, p.946, 1999.

R. Ross, The pathogenesis of atherosclerosis: A perspective for the 1990s, Nature, vol.362, p.801, 1993.

M. Mayr and Q. Xu, Smooth muscle cell apoptosis in arteriosclerosis, Exp Gerontol, vol.36, p.969, 2001.

P. Hayry, T. Paavonen, and A. Mennander, Pathophysiology of allograft arteriosclerosis, Transplant Proc, vol.25, p.2070, 1993.

P. C. Grimm, P. Nickerson, and J. Jeffery, Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection, N Engl J Med, vol.345, p.93, 2001.

P. Religa, K. Bojakowski, and M. Maksymowicz, Smooth-muscle progenitor cells of bone marrow origin contribute to the development of neointimal thickenings in rat aortic allografts and injured rat carotid arteries, Transplantation, vol.74, p.1310, 2002.

M. Sata, A. Saiura, and A. Kunisato, Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis, Nat Med, vol.8, p.403, 2002.

K. Shimizu, S. Sugiyama, and M. Aikawa, Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy, Nat Med, vol.7, p.738, 2001.

J. Hillebrands, B. M. Van-den-hurk, and F. A. Klatter, Recipient origin of neointimal vascular smooth muscle cells in cardiac allografts with transplant arteriosclerosis, J Heart Lung Transplant, vol.19, p.1183, 2000.

M. Sata, Y. Maejima, and F. Adachi, A mouse model of vascular injury that induces rapid onset of medial cell apoptosis followed by reproducible neointimal hyperplasia, J Mol Cell Cardiol, vol.32, p.2097, 2000.

P. Nieuwenhuis, J. L. Hillebrands, and J. Rozing, Chronic allograft rejection associated vasculopathy and synthetic biodegradable vascular grafts: A lesson to learn?, Crit Rev Immunol, vol.20, p.85, 2000.

A. Nardella, F. Chaubet, and C. Boisson-vidal, Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum, Carbohydr Res, vol.289, p.201, 1996.

E. A. Sweeney, H. Lortat-jacob, and G. V. Priestley, Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: Involvement in mobilization of stem/progenitor cells, Blood, vol.99, p.44, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01053365

C. E. Luyt, A. Meddahi-pelle, and B. Ho-tin-noe, Low-molecularweight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia, J Pharmacol Exp Ther, vol.305, p.24, 2003.

F. Zemani, D. Benisvy, and I. Galy-fauroux, Low-molecularweight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells, Biochem Pharmacol, vol.70, p.1167, 2005.

P. Chauvet, J. G. Bienvenu, and J. F. Theoret, Inhibition of plateletneutrophil interactions by Fucoidan reduces adhesion and vasoconstriction after acute arterial injury by angioplasty in pigs, J Cardiovasc Pharmacol, vol.34, p.597, 1999.

S. Anastase-ravion, M. P. Carreno, and C. Blondin, Heparin-like polymers modulate proinflammatory cytokine production by lipopolysaccharide-stimulated human monocytes, J Biomed Mater Res, vol.60, p.375, 2002.

S. M. Devine, N. Flomenberg, and D. H. Vesole, Rapid mobilization of CD34þ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and nonHodgkin's lymphoma, J Clin Oncol, vol.22, p.1095, 2004.