I. Prigogine, La thermodynamique de la vie, La Recherche, vol.99, p.38, 2000.

P. Novick, C. Field, and R. Schekman, Identification of 23 complementation groups required for posttranslational events in the yeast secretory pathway, Cell, vol.21, pp.205-220, 1980.

C. A. Kaiser and R. Schekman, Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway, Cell, vol.61, pp.723-756, 1990.

D. W. Wilson, C. A. Wilcox, and G. C. Flynn, A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast, Nature, vol.339, pp.355-364, 1989.

D. O. Clary, I. C. Griff, and J. E. Rothman, SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast, Cell, vol.61, pp.709-730, 1990.

I. C. Griff, R. Schekman, J. E. Rothman, and C. A. Kaiser, The yeast SEC17 gene product is functionally equivalent to mammalian ?-SNAP protein, J Cell Biol, vol.267, pp.12106-12121, 1992.

T. Söllner, S. W. Whiteheart, and M. Brunner, SNAP receptors implicated in vesicle targeting and fusion, Nature, vol.362, pp.318-342, 1993.

M. Baumert, P. R. Maycox, and F. Navone, Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicle of rat brain, EMBO J, vol.8, pp.379-84, 1989.

M. K. Bennett, N. Calakos, and R. H. Scheller, Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones, Science, vol.257, pp.255-264, 1992.

G. A. Oyler, J. W. Polli, and G. A. Higgins, Distribution and expression of SNAP-25 immunoreactivity in rat brain, rat PC-12 cells and human SMS-KCNR neuroblastoma cells, Dev Brain Res, vol.65, pp.133-179, 1992.

G. Schiavo, F. Benfenati, and B. Poulain, Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin, Nature, vol.359, pp.832-837, 1992.

J. Blasi, E. R. Chapman, and E. Link, Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25, Nature, vol.365, pp.160-163, 1993.

J. Blasi, E. R. Chapman, and S. Yamasaki, Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin, EMBO J, vol.12, pp.4821-4829, 1993.

T. Galli, T. Chilcote, and O. Mundigl, Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells, J Cell Biol, vol.125, pp.1015-1039, 1994.

S. Ferro-novick and R. Jahn, Vesicle fusion from yeast to man, Nature, vol.370, pp.191-194, 1994.

T. Galli, S. Martinez-arca, and F. Paumet, Mécanisme de la fusion membranaire, Med Sci (Paris), vol.18, pp.1113-1122, 2002.

M. Seagar, S. Quetglas, C. Iborra, and C. Leveque, Le complexe SNARE au coeur de la fusion membranaire, Med Sci (Paris), vol.17, pp.669-74, 2001.

T. Weber, B. V. Zemelman, and J. A. Mcnew, SNAREpins: minimal machinery for membrane fusion, Cell, vol.92, pp.759-72, 1998.

C. Hu, M. Ahmed, and T. J. Melia, Fusion of cells by flipped SNAREs, Science, vol.300, pp.1745-1754, 2003.

R. B. Sutton, D. Fasshauer, J. Reinhard, and A. T. Brunger, Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution, Nature, vol.395, pp.347-53, 1998.

F. Li, F. Pincet, and E. Perez, Energetics and dynamics of SNAREpin folding across lipid bilayers, Nat Struct Mol Biol, vol.14, pp.890-896, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-02296629

D. Tareste, Énergie libérée par la machinerie de fusion SNAREpin, Med Sci (Paris), vol.24, pp.142-145, 2008.

M. L. Nonet, O. Saifee, and H. J. Zhao, Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants, J Neurosci, vol.18, pp.70-80, 1998.

D. L. Deitcher, A. Ueda, and B. A. Stewart, Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin, J Neurosci, vol.18, pp.2028-2067, 1998.

S. Schoch, F. Deak, and A. Konigstorfer, SNARE function analyzed in synaptobrevin/VAMP knockout mice, Science, vol.294, pp.1117-1139, 2001.

P. Washbourne, P. M. Thompson, and M. Carta, Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis, Nat Neurosci, vol.5, pp.19-26, 2002.

R. Fernandezchacon, A. Konigstorfer, and S. H. Gerber, Synaptotagmin I functions as a calcium regulator of release probability, Nature, vol.410, pp.41-50, 2001.

H. T. Mcmahon, M. Missler, C. Li, and T. C. Südhof, Complexins: cytosolic proteins that regulate SNAP receptor function, Cell, vol.83, pp.111-120, 1995.

J. Tang, A. Maximov, and O. H. Shin, A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis, Cell, vol.126, pp.1175-87, 2006.

C. G. Giraudo, W. S. Eng, T. J. Melia, and J. E. Rothman, A clamping mechanism involved in SNARE-dependent exocytosis, Science, vol.313, pp.676-80, 2006.

M. Verhage, A. S. Maia, and J. J. Plomp, Synaptic assembly of the brain in the absence of neurotransmitter secretion, Science, vol.287, pp.864-873, 2000.

Y. Hata, C. A. Slaughter, and T. C. Sudhof, Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin, Nature, vol.366, pp.347-51, 1993.

J. Shen, D. Tareste, and F. Paumet, Selective activation of cognate SNAREpins by Sec1/Munc18 proteins, Cell, vol.128, pp.183-95, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-02296593

T. C. Sudhof and J. E. Rothman, Membrane fusion: grappling with SNARE and SM proteins, Science, vol.323, pp.474-481, 2009.

X. Nicol, S. Voyatzis, and A. Muzerelle, cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map, Nat Neurosci, vol.10, pp.340-347, 2007.

K. Zylbersztejn, M. Petkovic, and A. Burgo, The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion, J Cell Biol, vol.196, pp.37-46, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00665284

K. Zylbersztejn and T. Galli, Le trafic membranaire, un nouvel acteur du guidage axonal, Med Sci, vol.28, pp.267-276, 2012.

S. Danielian, N. Basile, and C. Rocco, Novel syntaxin 11 gene (STX11) mutation in three Argentinean patients with hemophagocytic lymphohistiocytosis, J Clin Immunol, vol.30, pp.330-337, 2010.

M. Cote, M. M. Menager, and A. Burgess, Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells, J Clin Invest, vol.119, pp.3765-73, 2009.

M. M. Menager, G. Menasche, and M. Romao, Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4, Nat Immunol, vol.8, pp.257-67, 2007.

J. Feldmann, I. Callebaut, and G. Raposo, Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3), Cell, vol.115, pp.461-73, 2003.

P. Larghi, D. J. Williamson, and J. M. Carpier, VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCRactivation sites, Nat Immunol, vol.14, pp.723-754, 2013.