K. Alitalo, T. Tammela, and T. V. Petrova, Lymphangiogenesis in development and human disease, Nature, vol.438, pp.946-53, 2005.

R. A. Mactier, R. Khanna, and Z. Twardowski, Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis, J Clin Invest, vol.80, pp.1311-1317, 1987.

K. Alitalo, The lymphatic vasculature in disease, Nat Med, vol.17, pp.1371-80, 2011.

J. Bernier-latmani, C. Cisarovsky, and C. S. Demir, DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport, J Clin Invest, vol.125, pp.4572-86, 2015.

H. Y. Lim, C. H. Thiam, and K. P. Yeo, Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL, Cell metab, vol.17, pp.671-84, 2013.

L. H. Huang, A. Elvington, and G. J. Randolph, The role of the lymphatic system in cholesterol transport, Front pharmacol, vol.6, p.182, 2015.

M. A. Swartz, The physiology of the lymphatic system, Adv Drug Deliv Rev, vol.50, pp.3-20, 2001.

M. A. Swartz and M. Skobe, Lymphatic function, lymphangiogenesis, and cancer metastasis, Microsc Res Tech, vol.55, pp.92-101, 2001.

T. Dietrich, F. Bock, and D. Yuen, Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation, J immunol, vol.184, pp.535-544, 2010.

Y. Yang and G. Oliver, Development of the mammalian lymphatic vasculature, J Clin Invest, vol.124, pp.888-97, 2014.

L. Klotz, S. Norman, and J. M. Vieira, Cardiac lymphatics are heterogeneous in origin and respond to injury, Nature, vol.522, pp.62-69, 2015.

S. Norman and P. R. Riley, Anatomy and development of the cardiac lymphatic vasculature: Its role in injury and disease, Clin Anat, vol.29, pp.305-320, 2016.

A. Aspelund, M. R. Robciuc, and S. Karaman, lymphatic system in cardiovascular medicine, Circ Res, vol.118, pp.515-545, 2016.

L. Stanczuk, I. Martinez-corral, and M. H. Ulvmar, cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels, Cell rep, 2015.

I. Martinez-corral, M. H. Ulvmar, and L. Stanczuk, Nonvenous origin of dermal lymphatic vasculature, Circ Res, vol.116, pp.1649-54, 2015.

P. S. Mortimer and S. G. Rockson, New developments in clinical aspects of lymphatic disease, J Clin Invest, vol.124, pp.915-936, 2014.

B. Garmy-susini and J. A. Varner, Roles of integrins in tumor angiogenesis and lymphangiogenesis, Lymphat Res Biol, vol.6, pp.155-63, 2008.

P. Y. Von-der-weid, S. Rehal, and J. G. Ferraz, Role of the lymphatic system in the pathogenesis of Crohn's disease, Curr Opin gastroenterol, vol.27, pp.335-376, 2011.

R. Huggenberger, S. Ullmann, and S. T. Proulx, Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation, J Exp Med, vol.207, pp.2255-69, 2010.

F. Morfoisse, F. Tatin, and F. Hantelys, Nucleolin promotes heat shockassociated translation of VEGF-D to promote tumor lymphangiogenesis, Cancer Res, vol.76, pp.4394-405, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02294493

F. Morfoisse, A. Kuchnio, and C. Frainay, Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1alpha-independent translationmediated mechanism, Cell Rep, vol.6, pp.155-67, 2014.

H. M. Bui, D. Enis, and M. R. Robciuc, Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD, J Clin Invest, vol.126, pp.2167-80, 2016.

M. J. Karkkainen, P. Haiko, and K. Sainio, Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins, Nat immunol, vol.5, pp.74-80, 2004.

M. Dufies, S. Giuliano, and D. Ambrosetti, Sunitinib stimulates expression of VEGFC by tumor cells and promotes lymphangiogenesis in clear cell renal cell carcinomas, Cancer Res, vol.77, pp.1212-1238, 2017.

T. Karnezis, R. Shayan, and C. Caesar, VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium, Cancer Cell, vol.21, pp.181-95, 2012.

H. N. Uhley, S. E. Leeds, and J. J. Sampson, The temporal sequence of lymph flow in the right lymphatic duct in experimental chronic pulmonary edema, Am Heart J, vol.72, pp.214-221, 1966.

P. Gloviczki, F. Solti, L. Szlavy, and H. Jellinek, Ultrastructural and electrophysiologic changes of experimental acute cardiac lymphostasis, Lymphology, vol.16, pp.185-92, 1983.

M. Loukas, N. Abel, and R. S. Tubbs, The cardiac lymphatic system, Clin Anat, vol.24, pp.684-91, 2011.

A. Bullon and F. Huth, Fine structure of lymphatics in the myocardium, Lymphology, vol.5, pp.42-50, 1972.

R. W. Lupinski, Aortic fat pad and atrial fibrillation: cardiac lymphatics revisited, ANZ J Surg, vol.79, pp.70-74, 2009.

S. Ichikawa, S. Uchino, and Y. Hirata, Lymphatics of the cardiac chordae tendineae with particular consideration of their origin, Lymphology, vol.22, pp.123-154, 1989.

I. Kholova, G. Dragneva, and P. Cermakova, Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions, Eur J Clin Invest, vol.41, pp.487-97, 2011.

O. Henri, C. Pouehe, and M. Houssari, Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction, Circulation, vol.133, pp.1484-97, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02296561

A. Milasan, N. Tessandier, and S. Tan, Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis, J Extracell Vesicles, vol.5, p.31427, 2016.