S. Martens and H. T. Mcmahon, Mechanisms of membrane fusion: disparate players and common principles, Nat Rev Mol Cell Biol, vol.9, pp.543-556, 2008.

L. V. Chernomordik and M. M. Kozlov, Mechanics of membrane fusion, Nat Struct Mol Biol, vol.15, pp.675-683, 2008.

R. Jahn and R. H. Scheller, SNAREs-engines for membrane fusion, Nat Rev Mol Cell Biol, vol.7, pp.631-643, 2006.

T. Söllner, M. K. Bennett, S. W. Whiteheart, R. H. Scheller, and J. E. Rothman, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion, Cell, vol.75, pp.409-418, 1993.

R. B. Sutton, D. Fasshauer, R. Jahn, and A. T. Brunger, Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution, Nature, vol.395, pp.347-353, 1998.

T. Weber, B. V. Zemelman, J. A. Mcnew, B. Westermann, M. Gmachl et al., SNAREpins: minimal machinery for membrane fusion, Cell, vol.92, pp.759-772, 1998.

J. A. Mcnew, T. Weber, F. Parlati, R. J. Johnston, T. J. Melia et al., Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors, J Cell Biol, vol.150, pp.105-117, 2000.

F. Li, F. Pincet, E. Perez, W. S. Eng, T. J. Melia et al., Energetics and dynamics of SNAREpin folding across lipid bilayers, Nat Struct Mol Biol, vol.14, pp.890-896, 2007.

S. C. Harrison, Viral membrane fusion, Virology, vol.479, pp.498-507, 2015.

J. A. Mcnew, H. Sondermann, T. Lee, M. Stern, and F. Brandizzi, GTPdependent membrane fusion, Annu Rev Cell Dev Biol, vol.29, pp.529-550, 2013.

D. C. Chan, Mitochondrial fusion and fission in mammals, Annu Rev Cell Dev Biol, vol.22, pp.79-99, 2006.

H. Chen and D. C. Chan, Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases, Hum Mol Genet, vol.18, pp.169-176, 2009.

F. Legros, A. Lombès, P. Frachon, and M. Rojo, Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins, Mol Biol Cell, vol.13, pp.4343-4354, 2002.

A. Santel and M. T. Fuller, Control of mitochondrial morphology by a human mitofusin, J Cell Sci, vol.114, pp.867-874, 2001.

M. Rojo, F. Legros, D. Chateau, and A. Lombès, Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo, J Cell Sci, vol.115, pp.1663-1674, 2002.

H. Chen, S. A. Detmer, A. J. Ewald, E. E. Griffin, S. E. Fraser et al., Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development, J Cell Biol, vol.160, pp.189-200, 2003.

Y. Eura, N. Ishihara, S. Yokota, and K. Mihara, Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion, J Biochem, vol.134, pp.333-344, 2003.

T. Koshiba, S. A. Detmer, J. T. Kaiser, H. Chen, J. M. Mccaffery et al., Structural basis of mitochondrial tethering by mitofusin complexes, Science, vol.305, pp.858-862, 2004.

S. Honda, T. Aihara, M. Hontani, K. Okubo, and S. Hirose, Mutational analysis of action of mitochondrial fusion factor mitofusin-2, J Cell Sci, vol.118, pp.3153-3161, 2005.

, The Authors EMBO report, vol.19, 2018.

E. E. Griffin and D. C. Chan, Domain interactions within Fzo1 oligomers are essential for mitochondrial fusion, J Biol Chem, vol.281, pp.16599-16606, 2006.

S. Mattie, J. Riemer, J. G. Wideman, and H. M. Mcbride, A new mitofusin topology places the redox-regulated C terminus in the mitochondrial intermembrane space, J Cell Biol, vol.217, pp.507-515, 2017.

S. Meeusen, J. M. Mccaffery, and J. Nunnari, Mitochondrial fusion intermediates revealed in vitro, Science, vol.305, pp.1747-1752, 2004.

T. Brandt, L. Cavellini, W. Kühlbrandt, and M. M. Cohen, A mitofusindependent docking ring complex triggers mitochondrial fusion in vitro, vol.5, p.14618, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01550113

G. J. Praefcke and H. T. Mcmahon, The dynamin superfamily: universal membrane tubulation and fission molecules?, Nat Rev Mol Cell Biol, vol.5, pp.133-147, 2004.

Y. Zhang and D. C. Chan, New insights into mitochondrial fusion, FEBS Lett, vol.581, pp.2168-2173, 2007.

Y. Qi, L. Yan, C. Yu, X. Guo, X. Zhou et al., Structures of human mitofusin 1 provide insight into mitochondrial tethering, J Cell Biol, vol.215, pp.621-629, 2016.

Y. L. Cao, S. Meng, Y. Chen, J. X. Feng, D. D. Gu et al., MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion, Nature, vol.542, pp.372-376, 2017.

P. Huang, C. A. Galloway, and Y. Yoon, Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins, PLoS One, vol.6, p.20655, 2011.

A. Franco, R. N. Kitsis, J. A. Fleischer, E. Gavathiotis, O. S. Kornfeld et al., Correcting mitochondrial fusion by manipulating mitofusin conformations, Nature, vol.540, pp.74-79, 2016.

D. Hoekstra and K. Klappe, Fluorescence assays to monitor fusion of enveloped viruses, Methods Enzymol, vol.220, pp.261-276, 1993.

D. Tareste, J. Shen, T. J. Melia, and J. E. Rothman, SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes, Proc Natl Acad Sci, vol.105, pp.2380-2385, 2008.

H. Ji, J. Coleman, R. Yang, T. J. Melia, J. E. Rothman et al., Protein determinants of SNARE-mediated lipid mixing, Biophys J, vol.99, pp.553-560, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00518069

B. S. Hamilton, G. R. Whittaker, and S. Daniel, Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion, Viruses, vol.4, pp.1144-1168, 2012.

J. Otterstrom and A. M. Van-oijen, Visualization of membrane fusion, one particle at a time, Biochemistry, vol.52, pp.1654-1668, 2013.

A. T. Brunger, D. J. Cipriano, and J. Diao, Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins, Crit Rev Biochem Mol Biol, vol.50, pp.231-241, 2015.

A. J. Valente, L. A. Maddalena, E. L. Robb, F. Moradi, and J. A. Stuart, A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture, Acta Histochem, vol.119, pp.315-326, 2017.

S. Takamori, M. Holt, K. Stenius, E. A. Lemke, M. Grønborg et al., Molecular anatomy of a trafficking organelle, Cell, vol.127, pp.831-846, 2006.

D. Ardail, J. P. Privat, M. Egret-charlier, C. Levrat, F. Lerme et al., Mitochondrial contact sites. Lipid composition and dynamics, J Biol Chem, vol.265, pp.18797-18802, 1990.

A. Jotwani, D. N. Richerson, I. Motta, O. Julca-zevallos, and T. J. Melia, Approaches to the study of Atg8-mediated membrane dynamics in vitro, Methods Cell Biol, vol.108, pp.93-116, 2012.

X. Lu, F. Zhang, J. A. Mcnew, and Y. K. Shin, Membrane fusion induced by neuronal SNAREs transits through hemifusion, J Biol Chem, vol.280, pp.30538-30541, 2005.

J. Shen, D. C. Tareste, F. Paumet, J. E. Rothman, and T. J. Melia, Selective activation of cognate SNAREpins by Sec1/Munc18 proteins, Cell, vol.128, pp.183-195, 2007.

J. M. Hernandez, A. Stein, E. Behrmann, D. Riedel, A. Cypionka et al., Membrane fusion intermediates via directional and full assembly of the SNARE complex, Science, vol.336, pp.1581-1584, 2012.

Y. Park, W. Vennekate, H. Yavuz, J. Preobraschenski, J. M. Hernandez et al., ) a-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery, J Biol Chem, vol.289, pp.16326-16335, 2014.

J. Rigaud and D. Lévy, Reconstitution of membrane proteins into liposomes, Methods Enzymol, vol.372, pp.65-86, 2003.

U. Baxa, Imaging of liposomes by transmission electron microscopy, Methods Mol Biol, vol.1682, pp.73-88, 2018.

C. G. Schuette, K. Hatsuzawa, M. Margittai, A. Stein, D. Riedel et al., Determinants of liposome fusion mediated by synaptic SNARE proteins, Proc Natl Acad Sci, vol.101, pp.2858-2863, 2004.

M. Holt, D. Riedel, A. Stein, C. Schuette, and R. Jahn, Synaptic vesicles are constitutively active fusion machines that function independently of Ca 2+, Curr Biol, vol.18, pp.715-722, 2008.

C. Bordier, Phase separation of integral membrane proteins in Triton X-114 solution, J Biol Chem, vol.256, pp.1604-1607, 1981.

S. H. White, W. C. Wimley, A. S. Ladokhin, and K. Hristova, Protein folding in membranes: determining energetics of peptide-bilayer interactions, Methods Enzymol, vol.295, pp.62-87, 1998.

Y. Li, X. Han, and L. K. Tamm, Thermodynamics of fusion peptidemembrane interactions, Biochemistry, vol.42, pp.7245-7251, 2003.

G. Drin and B. Antonny, Amphipathic helices and membrane curvature, FEBS Lett, vol.584, pp.1840-1847, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00497640

B. Liang, D. Dawidowski, J. F. Ellena, L. K. Tamm, and D. S. Cafiso, The SNARE motif of synaptobrevin exhibits an aqueous-interfacial partitioning that is modulated by membrane curvature, Biochemistry, vol.53, pp.1485-1494, 2014.

L. Vamparys, R. Gautier, S. Vanni, W. F. Bennett, D. P. Tieleman et al., Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature, Biophys J, vol.104, pp.585-593, 2013.

D. H. Kweon, C. S. Kim, and Y. K. Shin, Insertion of the membrane-proximal region of the neuronal SNARE coiled coil into the membrane, J Biol Chem, vol.278, pp.12367-12373, 2003.

J. F. Ellena, B. Liang, M. Wiktor, A. Stein, D. S. Cafiso et al., Dynamic structure of lipid-bound synaptobrevin suggests a nucleationpropagation mechanism for trans-SNARE complex formation, Proc Natl Acad Sci, vol.106, pp.20306-20311, 2009.

T. Y. Liu, X. Bian, S. Sun, X. Hu, R. W. Klemm et al., Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion, Proc Natl Acad Sci, vol.109, pp.2146-2154, 2012.

J. E. Faust, T. Desai, A. Verma, I. Ulengin, T. L. Sun et al., The Atlastin C-terminal tail is an amphipathic helix that perturbs the bilayer structure during endoplasmic reticulum homotypic fusion, J Biol Chem, vol.290, pp.4772-4783, 2015.

E. E. Ha and M. A. Frohman, Regulation of mitochondrial morphology by lipids, BioFactors, vol.40, pp.419-424, 2014.

W. Zhang, P. R. Chipman, J. Corver, P. R. Johnson, Y. Zhang et al., Visualization of membrane protein domains by cryo-electron microscopy of dengue virus, Nat Struct Biol, vol.10, pp.907-912, 2003.

S. Baoukina and D. P. Tieleman, Direct simulation of protein-mediated vesicle fusion: lung surfactant protein B, Biophys J, vol.99, pp.2134-2142, 2010.

X. Han, J. H. Bushweller, D. S. Cafiso, and L. K. Tamm, Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin, Nat Struct Biol, vol.8, pp.715-720, 2001.

T. Kanaseki, K. Kawasaki, M. Murata, Y. Ikeuchi, and S. Ohnishi, Structural features of membrane fusion between influenza virus and liposome as revealed by quick-freezing electron microscopy, J Cell Biol, vol.137, pp.1041-1056, 1997.

B. L. Victor, D. Lousa, J. M. Antunes, and C. M. Soares, Self-assembly molecular dynamics simulations shed light into the interaction of the influenza fusion Peptide with a membrane bilayer, J Chem Inf Model, vol.55, pp.795-805, 2015.

L. D. Cabrita, W. Dai, and S. P. Bottomley, A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production, BMC Biotechnol, vol.6, p.12, 2006.

R. B. Kapust, J. Tozser, J. D. Fox, D. E. Anderson, S. Cherry et al., Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency, Protein Eng Des Sel, vol.14, pp.993-1000, 2001.

B. L. Scott, J. S. Van-komen, S. Liu, T. Weber, T. J. Melia et al., Liposome fusion assay to monitor intracellular membrane fusion machines, Methods Enzymol, vol.372, pp.274-300, 2003.

F. Parlati, T. Weber, J. A. Mcnew, B. Westermann, T. H. Söllner et al., Rapid and efficient fusion of phospholipid vesicles by the alphahelical core of a SNARE complex in the absence of an N-terminal regulatory domain, Proc Natl Acad Sci, vol.96, pp.12565-12570, 1999.

N. Greenfield and G. D. Fasman, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry, vol.8, pp.4108-4116, 1969.

T. Wieprecht, M. Beyermann, and J. Seelig, Thermodynamics of the coil-a-helix transition of amphipathic peptides in a membrane environment: the role of vesicle curvature, Biophys Chem, vol.96, pp.191-201, 2002.

R. Rizzuto, M. Brini, P. Pizzo, M. Murgia, and T. Pozzan, Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells, Curr Biol, vol.5, pp.635-642, 1995.

R. Gautier, D. Douguet, B. Antonny, and G. Drin, HELIQUEST: a web server to screen sequences with specific alpha-helical properties, Bioinformatics, vol.24, pp.2101-2102, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311956

, The Authors EMBO report, vol.19, 2018.