, Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study, GBD 2016 Disease and Injury Incidence and Prevalence Collaborators, vol.390, pp.1211-59, 2016.

, WHO Fact sheet -Depression. World Health Organization, 2018.

R. M. Post, Heading off depressive illness evolution and progression to treatment resistance, Dialogues Clin Neurosci, vol.17, pp.105-114, 2015.

C. Rahe, M. Unrath, and K. Berger, Dietary patterns and the risk of depression in adults: a systematic review of observational studies, Eur J Nutr, vol.53, pp.997-1013, 2014.

J. S. Lai, S. Hiles, A. Bisquera, A. J. Hure, M. Mcevoy et al., A systematic review and meta-analysis of dietary patterns and depression in communitydwelling adults, Am J Clin Nutr, vol.99, pp.181-97, 2014.

Y. Li, M. Lv, Y. Wei, L. Sun, J. Zhang et al., Dietary patterns and depression risk: a meta-analysis, Psychiatry Res, vol.253, pp.373-82, 2017.

M. Molendijk, P. Molero, O. Sanchez-pedreno, F. Van-der-does, W. et al., Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies, J Affect Disord, vol.226, pp.346-54, 2017.

M. Adjibade, C. Lemogne, C. Julia, S. Hercberg, P. Galan et al., Prospective association between adherence to dietary recommendations and incident depressive symptoms in the French NutriNet-Santé cohort, Br J Nutr, vol.120, pp.290-300, 2018.

J. Wang, Y. Zhou, K. Chen, Y. Jing, J. He et al., Dietary inflammatory index and depression: a meta-analysis, Public Health Nutr, vol.22, pp.654-60, 2019.

C. M. Luiten, I. H. Steenhuis, H. Eyles, N. Mhurchu, C. Waterlander et al., Ultraprocessed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets, Public Health Nutr, vol.19, pp.530-538, 2016.

M. Steele, E. Baraldi, L. G. Da-c-louzada, M. L. Moubarac, J. Mozaffarian et al., Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study, BMJ Open, vol.6, p.9892, 2016.

C. A. Monteiro, J. Moubarac, G. Cannon, S. W. Ng, and B. Popkin, Ultra-processed products are becoming dominant in the global food system, Obes Rev, vol.14, pp.21-29, 2013.

L. G. Baraldi, M. Steele, E. Canella, D. S. Monteiro, and C. A. , Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: evidence from a nationally representative crosssectional study, BMJ Open, vol.8, p.20574, 2018.

C. Julia, L. Martinez, B. Allès, M. Touvier, S. Hercberg et al., Contribution of ultra-processed foods in the diet of adults from the French NutriNet-Santé study, Public Health Nutr, vol.21, pp.27-37, 2018.

D. S. Ludwig, Technology, diet, and the burden of chronic disease, JAMA, vol.305, pp.1352-1355, 2011.

P. Roca-saavedra, V. Mendez-vilabrille, J. M. Miranda, C. Nebot, A. Cardelle-cobas et al., Food additives, contaminants and other minor components: effects on human gut microbiota-a review, J Physiol Biochem, vol.74, pp.69-83, 2018.

M. Clapp, A. N. Herrera, L. Bhatia, M. Wilen, E. Wakefield et al., Gut microbiota's effect on mental health: the gut-brain axis, Clin Pract, vol.7, p.987, 2017.

M. L. Da-c-louzada, L. G. Baraldi, E. M. Steele, . Apb-m, D. S. Canella et al., Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults, Prev Med, vol.81, pp.9-15, 2015.

R. De-d-mendonça, . Acs-l, A. M. Pimenta, A. Gea, M. A. Martinez-gonzalez et al., Ultra-Processed Food Consumption and the Incidence of Hypertension in a Mediterranean Cohort: The Seguimiento Universidad de Navarra Project, Am J Hypertens, vol.30, pp.358-66, 2017.

L. F. Tavares, S. C. Fonseca, G. Rosa, M. L. Yokoo, and E. M. , Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program, Public Health Nutr, vol.15, pp.82-89, 2012.

T. Fiolet, B. Srour, L. Sellem, E. Kesse-guyot, B. Allès et al., Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort, BMJ, vol.360, p.322, 2018.

S. Hercberg, K. Castetbon, S. Czernichow, A. Malon, C. Mejean et al., The Nutrinet-Sante Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status, BMC Public Health, vol.10, p.242, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00668457

R. Führer and F. Rouillon, The French version of the Center for Epidemiologic Studies-Depression Scale, Psychiatr Psychobiol, vol.4, pp.163-169, 1989.

L. S. Radloff, The CES-D Scale: a self-report depression scale for research in the general population, Appl Psychol Meas, vol.1, pp.385-401, 1977.

M. Touvier, E. Kesse-guyot, C. Méjean, C. Pollet, A. Malon et al., Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies, Br J Nutr, vol.105, pp.1055-64, 2011.

C. Lassale, K. Castetbon, F. Laporte, G. M. Camilleri, V. Deschamps et al., Validation of a web-based, self-administered, non-consecutive-day dietary record tool against urinary biomarkers, Br J Nutr, vol.113, pp.953-62, 2015.

C. Lassale, K. Castetbon, F. Laporte, V. Deschamps, M. Vernay et al., Correlations between fruit, vegetables, fish, vitamins, and fatty acids estimated by web-based nonconsecutive dietary records and respective biomarkers of nutritional status, JAcadNutr Diet, vol.116, pp.427-465, 2016.

L. Moullec, N. Deheeger, M. Preziosi, P. Monteiro, P. Valeix et al., Validation of the photo manual used for the collection of dietary data in the SU.VI.MAX study, Cah Nutr Diététique, vol.31, pp.158-64, 1996.

, NutriNet-Santé coordination. Table de composition des aliments -Etude NutriNet-Santé, 2013.

A. E. Black, Critical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate. A practical guide to its calculation, use and limitations, IntJ Obes Relat Metab Disord, vol.24, pp.1119-1149, 2000.

C. A. Monteiro, G. Cannon, J. Moubarac, R. B. Levy, M. Louzada et al., The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing, Public Health Nutr, vol.21, pp.5-17, 2018.

A. Vergnaud, M. Touvier, C. Méjean, E. Kesse-guyot, C. Pollet et al., Agreement between web-based and paper versions of a sociodemographic questionnaire in the NutriNet-Santé study, Int J Public Health, vol.56, pp.407-424, 2011.

C. Lassale, S. Péneau, M. Touvier, C. Julia, P. Galan et al., Validity of web-based self-reported weight and height: results of the Nutrinet-Santé study, J Med Internet Res, vol.15, p.152, 2013.

M. Hagstromer, P. Oja, and M. Sjostrom, The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity, Public Health Nutr, vol.9, pp.755-62, 2006.

C. Derouesné, Cognitive difficulties scale" for assessment of memory complaints in general practice: a study of 1628 cognitively normal subjects aged 45-75 years, Int J Geriatr Psychiatry, vol.8, pp.599-607, 1993.

D. Mcnair and R. Kahn, Self-assessment of cognitive deficits, Assessment in Geriatr Psychopharmacol, pp.137-180, 1983.

R. R. Andridge and R. Little, A review of hot deck imputation for survey nonresponse, Int Stat Rev Rev Int Stat, vol.78, pp.40-64, 2010.

W. Willett, Nutritional epidemiology. USA, 2012.

W. N. Schofield, Predicting basal metabolic rate, new standards and review of previous work, Hum Nutr Clin Nutr, vol.39, issue.1, pp.5-41, 1985.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Stat Soc, vol.57, pp.289-300, 1995.

J. Moubarac, M. Batal, M. L. Louzada, M. Steele, E. Monteiro et al., Consumption of ultra-processed foods predicts diet quality in Canada, Appetite, vol.108, pp.512-532, 2017.

I. L. Djupegot, C. B. Nenseth, E. Bere, H. Bjørnarå, S. H. Helland et al., The association between time scarcity, sociodemographic correlates and consumption of ultra-processed foods among parents in Norway: a crosssectional study, BMC Public Health, vol.17, p.447, 2017.

M. Steele, E. Popkin, B. M. Swinburn, B. Monteiro, and C. A. , The share of ultraprocessed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study, Popul Health Metrics, vol.15, p.6, 2017.

T. N. Akbaraly, E. J. Brunner, J. E. Ferrie, M. G. Marmot, M. Kivimaki et al., Dietary pattern and depressive symptoms in middle age, Br J Psychiatry, vol.195, pp.408-421, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00432097

A. Sánchez-villegas, E. Toledo, J. De-irala, M. Ruiz-canela, J. Pla-vidal et al., Fast-food and commercial baked goods consumption and the risk of depression, Public Health Nutr, vol.15, pp.424-456, 2012.

F. N. Jacka, N. Cherbuin, K. J. Anstey, and P. Butterworth, Dietary patterns and depressive symptoms over time: examining the relationships with socioeconomic position, health behaviours and cardiovascular risk, PLoS One, vol.9, p.87657, 2014.

M. C. Cenit, Y. Sanz, and P. Codoñer-franch, Influence of gut microbiota on neuropsychiatric disorders, World J Gastroenterol, vol.23, pp.5486-98, 2017.

A. K. Choudhary and Y. Y. Lee, Neurophysiological symptoms and aspartame: what is the connection?, Nutr Neurosci, vol.21, pp.306-322, 2018.

S. Lohner, I. Toews, and J. J. Meerpohl, Health outcomes of non-nutritive sweeteners: analysis of the research landscape, Nutr J, vol.16, p.55, 2017.

M. K. Zinöcker and I. A. Lindseth, The Western diet-microbiome-host interaction and its role in metabolic disease, Nutrients, vol.10, p.365, 2018.

I. Grissa, S. Guezguez, L. Ezzi, S. Chakroun, A. Sallem et al., The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain, Environ Sci Pollut Res Int, vol.23, pp.20205-20218, 2016.

C. B. Quines, S. G. Rosa, D. Rocha, J. T. Gai, B. M. Bortolatto et al., Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young rats, Life Sci, vol.107, pp.27-31, 2014.

A. E. Campos-sepúlveda, M. Enríquez, M. E. , R. Arellanes, R. Peláez et al., Neonatal monosodium glutamate administration increases aminooxyacetic acid (AOA) susceptibility effects in adult mice, Proc West Pharmacol Soc, vol.52, pp.72-76, 2009.

J. Adams and M. White, Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: crosssectional analysis of UK National Diet and Nutrition Survey (2008-12), Int J Behav Nutr Phys Act, vol.12, p.160, 2015.