J. Corre, N. Munshi, and H. Avet-loiseau, Genetics of multiple myeloma: another heterogeneity level?, Blood, vol.125, pp.1870-1876, 2015.

S. Manier, Genomic complexity of multiple myeloma and its clinical implications, Nat. Rev. Clin. Oncol, vol.14, pp.100-113, 2017.

G. J. Morgan, B. A. Walker, and F. E. Davies, The genetic architecture of multiple myeloma, Nat. Rev. Cancer, vol.12, pp.335-348, 2012.

B. A. Walker, APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma, Nat. Commun, vol.6, p.6997, 2015.

N. Bolli, Heterogeneity of genomic evolution and mutational profiles in multiple myeloma, Nat. Commun, vol.5, p.2997, 2014.

M. A. Chapman, Initial genome sequencing and analysis of multiple myeloma, Nature, vol.471, pp.467-472, 2011.

J. G. Lohr, Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy, Cancer Cell, vol.25, pp.91-101, 2014.

B. A. Walker, Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma, J. Clin. Oncol, vol.33, pp.3911-3920, 2015.

N. Bolli, Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups, Leukemia, vol.32, pp.2604-2616, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01808859

J. J. Keats, Clonal competition with alternating dominance in multiple myeloma, Blood, vol.120, pp.1067-1076, 2012.

F. Magrangeas, Minor clone provides a reservoir for relapse in multiple myeloma, Leukemia, vol.27, pp.473-481, 2013.

B. A. Walker, Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms, Leukemia, vol.28, pp.384-390, 2014.

B. A. Walker, Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma, Blood, vol.132, pp.587-597, 2018.

F. Maura, Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines, Leukemia, vol.32, pp.2459-2470, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01808879

I. Martincorena and P. J. Campbell, Somatic mutation in cancer and normal cells, Science, vol.349, pp.1483-1489, 2015.

I. Martincorena, Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin, Science, vol.348, pp.880-886, 2015.

I. Martincorena, Universal patterns of selection in cancer and somatic tissues, Cell, vol.171, p.1021, 2017.

K. Krysiak, Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma, Blood, vol.129, pp.473-483, 2017.

M. Seiler, Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types, Cell Rep, vol.23, p.284, 2018.

X. S. Puente, Non-coding recurrent mutations in chronic lymphocytic leukaemia, Nature, vol.526, pp.519-524, 2015.

A. Reddy, Genetic and functional drivers of diffuse large B cell lymphoma, Cell, vol.171, p.415, 2017.

P. H. Hoang, Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms, Leukemia, vol.32, pp.2459-2470, 2018.

E. Papaemmanuil, Genomic classification and prognosis in acute myeloid leukemia, N. Engl. J. Med, vol.374, pp.2209-2221, 2016.

J. Grinfeld, Classification and personalized prognosis in myeloproliferative neoplasms, N. Engl. J. Med, vol.379, pp.1416-1430, 2018.

Y. Li, Patterns of structural variation in human cancer, 2017.

J. O. Korbel and P. J. Campbell, Criteria for inference of chromothripsis in cancer genomes, Cell, vol.152, pp.1226-1236, 2013.

Y. Li, Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia, Nature, vol.508, pp.98-102, 2014.

J. Maciejowski, Y. Li, N. Bosco, P. J. Campbell, and T. De-lange, Chromothripsis and kataegis induced by telomere crisis, Cell, vol.163, pp.1641-1654, 2015.

F. Magrangeas, H. Avet-loiseau, N. C. Munshi, and S. Minvielle, Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients, Blood, vol.118, pp.675-678, 2011.

M. Affer, Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma, Leukemia, vol.28, pp.1725-1735, 2014.

S. Fabris, Characterization of oncogene dysregulation in multiple myeloma by combined FISH and DNA microarray analyses, Genes Chromosom Cancer, vol.42, pp.117-127, 2005.

S. S. Chavan, Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker, Blood Cancer J, vol.7, p.535, 2017.

F. Bolli, Genomic patterns of progression in smoldering multiple myeloma, Nat. Commun, vol.9, p.3363, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01885513

L. Rasche, Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing, Nat. Commun, vol.8, p.268, 2017.

G. Gerstung, The evolutionary history of 2,658 cancers, 2018.

B. A. Walker, A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis, Leukemia, vol.33, pp.159-170, 2019.

N. Keane, MYC translocations identified by sequencing panel in smoldering multiple myeloma strongly predict for rapid progression to multiple myeloma, Blood, vol.130, p.393, 2017.

S. Nik-zainal, The life history of 21 breast cancers, Cell, vol.149, pp.994-1007, 2012.

L. B. Alexandrov, Clock-like mutational processes in human somatic cells, Nat. Genet, vol.47, pp.1402-1407, 2015.

T. J. Mitchell, Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal, Cell, vol.173, p.617, 2018.

H. Li and R. Durbin, Fast and accurate short read alignment with BurrowsWheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

D. Jones, cgpCaVEManWrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data, Curr. Protoc. Bioinform, vol.56, pp.11-15, 2016.

S. Nik-zainal, Landscape of somatic mutations in 560 breast cancer whole-genome sequences, Nature, vol.534, pp.47-54, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388447

K. M. Raine, cgpPindel: identifying somatically acquired insertion and deletion events from paired end sequencing, Curr. Protoc. Bioinforma, vol.52, pp.11-12, 2015.

A. Coletta, InSilico DB genomic datasets hub: an efficient starting point for analyzing genome-wide studies in GenePattern, Integrative Genomics Viewer, and R/Bioconductor, Genome Biol, vol.13, p.104, 2012.

K. M. Raine, ascatNgs: identifying somatically acquired copy-number alterations from whole-genome sequencing data, Curr. Protoc. Bioinforma, vol.56, pp.11-15, 2016.

S. Nik-zainal, Mutational processes molding the genomes of 21 breast cancers, Cell, vol.149, pp.979-993, 2012.

M. Bartlett and J. Cussens, Integer linear programming for the Bayesian network structure learning problem, Artificial Intelligence, vol.244, pp.258-271, 2015.

G. Gamrath, The SCIP Optimization suite 3.2. (ZIB, Takustr, vol.7, p.14195

. Berlin, , 2016.

J. Wielemaker, T. Schrijvers, M. Triska, T. Lager, and . Swi-prolog, Theory Pract. Log. Program, vol.12, pp.67-96, 2012.

D. B. Clarkson, Y. Fan, and H. Joe, A remark on algorithm 643: FEXACT: an algorithm for performing Fisher's exact test in r × c contingency tables, ACM Trans. Math. Softw, vol.19, pp.484-488, 1993.

K. Paulsson, The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia, Nat. Genet, vol.47, pp.672-676, 2015.

L. R. Yates, Subclonal diversification of primary breast cancer revealed by multiregion sequencing, Nat. Med, vol.21, pp.751-759, 2015.