, Ovarian cancer multi-omics data visualisation on ACSN: zoomed on WNT non-canonical signalling pathway. Immunoreactive (A) and Proliferative (B) subtypes are compared. Patches using the map staining function represent the average expression level of the corresponding genes, vol.14

, Abbreviations ACSN: Atlas of Cancer Signalling Network; ATP: Adenosine triphosphate

, GMT: Gene Matrix Transposed file format; HGNC: HUGO Gene Nomenclature Committee; HTML: HyperText Markup Language; HTTP: HyperText Transfer Protocol; HUGO: Human Genome Organization; SBGN: Systems Biology Graphical Notation; SBML: Systems Biology Markup Language; TCGA: The Cancer Genome Atlas

A. Noronha, A. D. Daníelsdóttir, P. Gawron, F. Jóhannsson, S. Jónsdóttir et al., ReconMap: an interactive visualization of human metabolism, Bioinformatics, vol.33, issue.4, pp.605-612, 2017.

I. Thiele, N. Swainston, R. Fleming, A. Hoppe, S. Sahoo et al., A community-driven global reconstruction of human metabolism, Nat Biotechnol, vol.31, issue.5, pp.419-444, 2013.

I. Kuperstein, E. Bonnet, H. A. Nguyen, D. Cohen, E. Viara et al., Atlas of Cancer Signalling network: a systems biology resource for integrative analysis of cancer data with Google maps, Oncogenesis, vol.4, 2015.

I. Kuperstein, D. Cohen, S. Pook, E. Viara, L. Calzone et al., NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps, BMC Syst Biol, vol.7, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00872428

E. Bonnet, E. Viara, I. Kuperstein, L. Calzone, D. Cohen et al., NaviCell web service for network-based data visualization, Nucleic Acids Res, vol.43, issue.W1, pp.560-565, 2015.

H. Kitano, A. Funahashi, Y. Matsuoka, and K. Oda, Using process diagrams for the graphical representation of biological networks, Nat Biotechnol, 2005.

G. Stoll, D. Surdez, F. Tirode, K. Laud, E. Barillot et al., Systems biology of Ewing sarcoma: a network model of EWS-FLI1 effect on proliferation and apoptosis, Nucleic Acids Res, vol.41, pp.8853-71, 2013.

A. Biton, I. Bernard-pierrot, Y. Lou, C. Krucker, E. Chapeaublanc et al., Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes, Cell Rep, vol.9, issue.4, pp.1235-1280, 2014.

W. Jdey, S. Thierry, C. Russo, F. Devun, A. Abo et al., Drugdriven synthetic lethality: bypassing tumor cell genetics with a combination of AsiDNA and PARP inhibitors, Clin Cancer Res, vol.23, issue.4, pp.1001-1012, 2017.

A. Funahashi, M. Morohashi, H. Kitano, and N. Tanimura, CellDesigner: a process diagram editor for gene-regulatory and biochemical networks, BIOSILICO, vol.1, issue.5, pp.159-62, 2003.

A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi et al., CellDesigner 3.5: a versatile modeling tool for biochemical networks, Proc IEEE, vol.96, issue.8, pp.1254-65, 2008.

A. Zinovyev, E. Viara, L. Calzone, and E. Barillot, BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks, Bioinformatics, vol.24, issue.6, pp.876-883, 2008.

E. Bonnet, L. Calzone, D. Rovera, G. Stoll, E. Barillot et al., BiNoM 2.0, a Cytoscape plugin for accessing and analyzing pathways using standard systems biology formats, BMC Syst Biol, vol.7, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00820930

, Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma, Nature, vol.474, issue.7353, pp.609-624, 2011.

J. Sassone, A. Maraschi, F. Sassone, V. Silani, and A. Ciammola, Defining the role of the Bcl-2 family proteins in Huntington's disease, Cell Death Dis, vol.4, issue.8, p.772, 2013.

J. C. Green, D. R. Reed, D. R. Green, J. C. Reed, R. M. Kluck et al., Mitochondria and apoptosis, Science, vol.281, issue.5381, pp.1309-1321, 1998.

C. Wang and R. J. Youle, The role of mitochondria in apoptosis, Annu Rev Genet, vol.43, pp.95-118, 2009.

V. A. Tkachuk, Phosphoinositide metabolism and Ca2+ oscillation, Biochemistry, vol.63, issue.1, pp.38-46, 1998.

J. Tan, C. Yu, Z. Wang, H. Chen, J. Guan et al., Genetic variants in the inositol phosphate metabolism pathway and risk of different types of cancer, Sci Rep, vol.5, issue.1, p.8473, 2015.

W. Martinet, D. Meyer, G. Herman, A. G. Kockx, and M. M. , Amino acid deprivation induces both apoptosis and autophagy in murine C2C12 muscle cells, Biotechnol Lett, vol.27, issue.16, pp.1157-63, 2005.

Y. M. Fu, Z. X. Yu, H. Lin, X. Fu, and G. G. Meadows, Selective amino acid restriction differentially affects the motility and directionality of DU145 and PC3 prostate cancer cells, J Cell Physiol, vol.217, issue.1, pp.184-93, 2008.

P. M. Bhargava, E. P. Allin, and L. Montagnier, Uptake of amino acids and thymidine during the first cell cycle of synchronized hamster cells, J Membrane Biol, vol.26, pp.1-17, 1976.

A. J. Meijer and P. F. Dubbelhuis, Amino acid signalling and the integration of metabolism, Biochem Biophys Res Commun, vol.313, pp.397-403, 2004.

K. T. Pate, C. Stringari, S. Sprowl-tanio, K. Wang, T. Teslaa et al., Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer, EMBO J, 2014.

L. Martignetti, L. Calzone, E. Bonnet, E. Barillot, and Z. A. Roma, Representation and quantification of module activity from target expression data, Front Genet, vol.7, p.18, 2016.

J. Schellenberger, R. Que, R. Fleming, I. Thiele, J. D. Orth et al., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0, Nat Protoc, vol.6, issue.9, pp.1290-307, 2011.