B. Shan, H. Pan, A. Najafov, and J. Yuan, Necroptosis in development and diseases, Genes Dev, vol.32, pp.327-340, 2018.

R. Weinlich, A. Oberst, H. M. Beere, and D. R. Green, Necroptosis in development, inflammation and disease, Nat Rev Mol Cell Biol, vol.18, pp.127-136, 2017.

L. Sun, H. Wang, Z. Wang, S. He, S. Chen et al., Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase, Cell, vol.148, pp.213-227, 2012.

S. He, L. Wang, L. Miao, T. Wang, F. Du et al., Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha, Cell, vol.137, pp.1100-1111, 2009.

D. Zhang, J. Shao, J. Lin, N. Zhang, B. Lu et al., RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis, Science, vol.325, pp.332-336, 2009.

A. Degterev, Z. Huang, M. Boyce, Y. Li, P. Jagtap et al., Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nat Chem Biol, vol.1, pp.112-119, 2005.

Y. S. Cho, S. Challa, D. Moquin, R. Genga, T. D. Ray et al., Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation, Cell, vol.137, pp.1112-1123, 2009.

J. Zhao, S. Jitkaew, Z. Cai, S. Choksi, Q. Li et al., Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis, Proc Natl Acad Sci, vol.109, pp.5322-5327, 2012.

M. Mompean, W. Li, J. Li, S. Laage, A. B. Siemer et al., The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex, Cell, vol.173, pp.1244-1253, 2018.

J. M. Murphy, P. E. Czabotar, J. M. Hildebrand, I. S. Lucet, J. Zhang et al., The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism, Immunity, vol.39, pp.443-453, 2013.

S. Zargarian, I. Shlomovitz, Z. Erlich, A. Hourizadeh, Y. Ofir-birin et al., Phosphatidylserine externalization, 'necroptotic bodies' release, and phagocytosis during necroptosis, PLoS Biol, vol.15, p.2002711, 2017.

Y. Gong, C. Guy, H. Olauson, J. U. Becker, M. Yang et al., ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences, Cell, vol.169, pp.286-300, 2017.

C. M. Dovey, J. Diep, B. P. Clarke, A. T. Hale, D. E. Mcnamara et al., MLKL requires the inositol phosphate code to execute necroptosis, Mol Cell, vol.70, pp.936-948, 2018.

H. Wang, L. Sun, L. Su, J. Rizo, L. Liu et al., Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3, Mol Cell, vol.54, pp.133-146, 2014.

Z. Cai, S. Jitkaew, J. Zhao, H. Chiang, S. Choksi et al., Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis, Nat Cell Biol, vol.16, pp.55-65, 2014.

Y. Dondelinger, W. Declercq, S. Montessuit, R. Roelandt, A. Goncalves et al., MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates, Cell Rep, vol.7, pp.971-981, 2014.

Y. Gong, C. Guy, J. C. Crawford, and D. R. Green, Biological events and molecular signaling following MLKL activation during necroptosis, Cell Cycle, vol.16, pp.1748-1760, 2017.

K. Zhu, W. Liang, Z. Ma, D. Xu, S. Cao et al., Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression, Cell Death Dis, vol.9, p.500, 2018.

S. Yoon, A. Kovalenko, K. Bogdanov, and D. Wallach, MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation, Immunity, vol.47, pp.51-65, 2017.

W. Fan, J. Guo, B. Gao, W. Zhang, L. Ling et al., Flotillin-mediated endocytosis and ALIX-syntenin-1-mediated exocytosis protect the cell membrane from damage caused by necroptosis, Sci Signal, vol.12, p.3423, 2019.

M. Colombo, G. Raposo, and C. Thery, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles, Annu Rev Cell Dev Biol, vol.30, pp.255-289, 2014.

J. L. Esseltine and D. W. Laird, Next-generation connexin and pannexin cell biology, Trends Cell Biol, vol.26, pp.944-955, 2016.

F. B. Chekeni, M. R. Elliott, J. K. Sandilos, S. F. Walk, J. M. Kinchen et al., Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis, Nature, vol.467, pp.863-867, 2010.

D. Yang, Y. He, R. Muñoz-planillo, Q. Liu, and G. Núñez, Caspase-11 requires the Pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock, Immunity, vol.43, pp.923-932, 2015.

K. W. Chen, B. Demarco, R. Heilig, K. Shkarina, A. Boettcher et al., Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly, EMBO J, vol.38, p.101638, 2019.

L. Galluzzi, O. Kepp, F. Chan, and G. Kroemer, Necroptosis: mechanisms and relevance to disease, Annu Rev Pathol, vol.12, pp.103-130, 2017.

J. M. Hildebrand, M. C. Tanzer, I. S. Lucet, S. N. Young, S. K. Spall et al., Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death, Proc Natl Acad Sci, vol.111, pp.15072-15077, 2014.

I. Poon, Y. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella et al., Unexpected link between an antibiotic, pannexin channels and apoptosis, Nature, vol.507, pp.329-334, 2014.

D. Boassa, C. Ambrosi, F. Qiu, G. Dahl, G. Gaietta et al., Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane, J Biol Chem, vol.282, pp.31733-31743, 2007.

A. M. Boyd-tressler, G. S. Lane, and G. R. Dubyak, Up-regulated ectonucleotidases in Fas-associated death domain protein-and receptor-interacting protein kinase 1-deficient Jurkat leukemia cells counteract extracellular ATP/AMP accumulation via Pannexin-1 channels during chemotherapeutic drug-induced apoptosis, Mol Pharmacol, vol.92, pp.30-47, 2017.

U. Ros, A. Pena-blanco, K. Hanggi, U. Kunzendorf, S. Krautwald et al., Necroptosis execution is mediated by plasma membrane nanopores independent of calcium, Cell Rep, vol.19, pp.175-187, 2017.

Z. Cai, A. Zhang, S. Choksi, W. Li, T. Li et al., Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration, Cell Res, vol.26, pp.886-900, 2016.

Y. Chiu, M. S. Schappe, B. N. Desai, and D. A. Bayliss, Revisiting multimodal activation and channel properties of Pannexin 1, J Gen Physiol, vol.150, pp.19-39, 2018.

S. A. Conos, K. W. Chen, D. Nardo, D. Hara, H. Whitehead et al., Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner, Proc Natl Acad Sci, vol.114, pp.961-969, 2017.

K. Segawa and S. Nagata, An apoptotic 'eat me' signal: phosphatidylserine exposure, Trends Cell Biol, vol.25, pp.639-650, 2015.

G. K. Atkin-smith, R. Tixeira, S. Paone, S. Mathivanan, C. Collins et al., A novel mechanism of generating extracellular vesicles during apoptosis via a beadson-a-string membrane structure, Nat Commun, vol.6, p.7439, 2015.

C. J. Kearney and S. J. Martin, An inflammatory perspective on necroptosis, Mol Cell, vol.65, pp.965-973, 2017.

, The Authors EMBO reports, vol.47840, 2019.

M. Seehawer, F. Heinzmann, D. 'artista, L. Harbig, J. Roux et al., Necroptosis microenvironment directs lineage commitment in liver cancer, Nature, vol.562, pp.69-75, 2018.

B. Strilic, L. Yang, J. Albarran-juarez, L. Wachsmuth, K. Han et al., Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis, Nature, vol.536, pp.215-218, 2016.

T. Douanne, G. André-grégoire, A. Thys, K. Trillet, J. Gavard et al., CYLD regulates centriolar satellites proteostasis by counteracting the E3 ligase MIB1, Cell Rep, vol.27, pp.1657-1665, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02128157

A. Hendrix, D. Maynard, P. Pauwels, G. Braems, H. Denys et al., Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis, J Natl Cancer Inst, vol.102, pp.866-880, 2010.

O. Shalem, N. E. Sanjana, E. Hartenian, X. Shi, D. A. Scott et al., Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, vol.343, pp.84-87, 2014.

N. E. Sanjana, O. Shalem, and F. Zhang, Improved vectors and genomewide libraries for CRISPR screening, Nat Methods, vol.11, pp.783-784, 2014.

Y. Chiu, J. X. Medina, C. B. Leonhardt, S. A. Kiessling, V. Bennett et al., A quantized mechanism for activation of pannexin channels, Nat Commun, vol.8, p.14324, 2017.

G. Ball, J. Demmerle, R. Kaufmann, I. Davis, I. M. Dobbie et al., SIMcheck: a toolbox for successful super-resolution structured illumination microscopy, Sci Rep, vol.5, p.15915, 2015.

D. Legland, I. Arganda-carreras, and A. P. , MorphoLibJ: integrated library and plugins for mathematical morphology with, ImageJ. Bioinformatics, vol.32, pp.3532-3534, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438611

G. Andre-gregoire, N. Bidere, and J. Gavard, Temozolomide affects extracellular vesicles released by glioblastoma cells, Biochimie, vol.155, pp.11-15, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01715956

J. Van-deun, P. Mestdagh, P. Agostinis, O. Akay, S. Anand et al., EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research, Nat Methods, vol.14, pp.228-232, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607037