E. Dominguez, W. Raoul, B. Calippe, J. Sahel, X. Guillonneau et al., Experimental branch retinal vein occlusion induces upstream pericyte loss and vascular destabilization, PLoS One, vol.10, issue.7, p.132644, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01231103

A. Ebneter, D. Kokona, N. Schneider, and M. S. Zinkernagel, Microglia activation and recruitment of circulating macrophages during ischemic experimental branch retinal vein occlusion, Investig Ophthalmol Vis Sci, vol.58, pp.944-53, 2017.

J. Feng, T. Zhao, Y. Zhang, Y. Ma, and Y. Jiang, Differences in aqueous concentrations of cytokines in macular edema secondary to branch and central retinal vein occlusion, PLoS One, vol.8, issue.7, p.68149, 2013.

S. Kaneda, D. Miyazaki, S. Sasaki, K. Yakura, Y. Terasaka et al., Multivariate analyses of inflammatory cytokines in eyes with branch retinal vein occlusion: relationships to bevacizumab treatment, Invest Ophthalmol Vis Sci, vol.52, pp.2982-2990, 2011.

A. Fonollosa, J. Garcia-arumi, S. E. Macia, C. Fernandez, P. Segura et al., Vitreous levels of interleukine-8 and monocyte chemoattractant protein-1 in macular oedema with branch retinal vein occlusion, Eye, vol.24, pp.1284-90, 2010.

T. Yoshimura, K. H. Sonoda, M. Sugahara, Y. Mochizuki, H. Enaida et al., Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases, PLoS One, vol.4, issue.12, p.8158, 2009.

M. Pfister, F. Rothweiler, M. Michaelis, J. Cinatl, R. Schubert et al., Correlation of inflammatory and proangiogenic cytokines from undiluted vitreous samples with spectral domain OCT scans, in untreated branch retinal vein occlusion, Clin Ophthalmol, vol.7, pp.1061-1068, 2013.

F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, and K. Ley, Development of monocytes, macrophages and dendritic cells. Science (80-), vol.327, pp.656-61, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502972

F. K. Swirski, P. Libby, E. Aikawa, P. Alcaide, F. W. Luscinskas et al., Ly6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata, J Clin Invest, vol.117, pp.195-205, 2007.

C. L. Tsou, W. Peters, Y. Si, S. Slaymaker, A. M. Aslanian et al., Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites, J Clin Invest, vol.117, pp.902-911, 2007.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

C. Combadière, S. Potteaux, J. L. Gao, B. Esposito, S. Casanova et al., Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice, Circulation, vol.107, pp.1009-1025, 2003.

A. Ebneter, C. Agca, C. Dysli, and M. S. Zinkernagel, Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion, PLoS One, vol.10, pp.1-15, 2015.

E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, A computational tool for quantitative analysis of vascular networks, PLoS One, vol.6, pp.1-12, 2011.

F. Sennlaub, C. Auvynet, B. Calippe, S. Lavalette, L. Poupel et al., CCR2+ monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice, EMBO Mol Med, vol.5, pp.1775-93, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00912837

H. Xu, M. Chen, E. J. Mayer, J. V. Forrester, and A. D. Dick, Turnover of resident retinal microglia in the normal adult mouse, Glia, vol.55, issue.11, pp.1189-98, 2007.

H. D. Danenberg, I. Fishbein, J. Gao, R. Reich, I. Gati et al., Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats, Circulation, vol.106, issue.5, pp.599-605, 2002.

D. Checchin, F. Sennlaub, E. Levavasseur, and M. Leduc, Potential role of microglia in retinal blood vessel formation, Invest Ophthalmol Vis Sci, vol.47, issue.8, pp.3595-602, 2006.

S. Nourshargh and R. Alon, Leukocyte migration into inflamed tissues, Immunity, vol.41, pp.694-707, 2014.

M. Nahrendorf, F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J Exp Med, vol.204, issue.12, pp.3037-3084, 2007.

E. Shantsila, L. D. Tapp, B. J. Wrigley, S. Montoro-garcia, and G. Lip, CXCR4 positive and angiogenic monocytes in myocardial infarction, Thromb Haemost, vol.109, issue.2, pp.255-62, 2013.

E. A. Liehn, N. Tuchscheerer, I. Kanzler, M. Drechsler, L. Fraemohs et al., Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction, J Am Coll Cardiol, vol.58, issue.23, pp.2415-2438, 2011.

E. E. Mccandless, Q. Wang, B. M. Woerner, J. M. Harper, and R. S. Klein, CXCL12 limits inflammation by localizing mononuclear, J Immunol, vol.1, pp.8053-64, 2006.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations