D. Borenstein, Mechanical low back pain -A rheumatologist's view, Nat. Rev. Rheumatol, 2013.

A. A. Abajobir, K. H. Abate, C. Abbafati, K. M. Abbas, F. Abd-allah et al.,

E. Amare, W. Amini, Y. A. Ammar, M. G. Amoako, C. A. Ansha et al.,

H. E. Ermakov, S. Erskine, B. Eshetie, A. Eshrati, K. Esteghamati et al.,

J. C. Fereshtehnejad, A. J. Fernandes, T. R. Ferrari, I. Feyissa, F. Filip et al.,

I. A. Khader, E. A. Khalil, Y. H. Khan, A. T. Khang, A. Khoja et al.,

L. Mollenkopf, J. C. Monasta, M. Hernandez, M. Montico, P. Moradi-lakeh et al.,

M. Owolabi, R. E. Pa, B. K. Pacella, J. D. Panda, C. Pandian et al.,

T. Ranabhat, Z. Rangaswamy, P. V. Rankin, P. C. Rao, S. Rao et al., Lancet, issue.17, p.32130, 2016.

L. Manchikanti, V. Singh, S. Datta, S. P. Cohen, and J. Hirsch, Comprehensive review of epidemiology, scope, and impact of spinal pain, vol.12, 2009.

W. J. Wang, X. H. Yu, C. Wang, W. Yang, W. S. He et al., MMPs and ADAMTSs in intervertebral disc degeneration, vol.448, pp.238-246, 2015.

D. Hoy, P. Brooks, F. Blyth, and R. Buchbinder, The Epidemiology of low back pain, Best Pract. Res. Clin. Rheumatol, vol.24, pp.769-781, 2010.

L. March, E. U. Smith, D. G. Hoy, M. J. Cross, L. Sanchez-riera et al., Burden of disability due to musculoskeletal (MSK) disorders, Best Pract. Res. Clin. Rheumatol, 2014.

K. M. Cheung, J. Karppinen, D. Chan, D. W. Ho, Y. Song et al., Prevalence and Pattern of Lumbar Magnetic Resonance Imaging Changes in a Population Study of One Thousand Forty-Three Individuals, Spine (Phila, vol.34, pp.934-940, 1976.

G. B. Andersson, Epidemiological features of chronic low-back pain, Lancet, vol.354, pp.581-585, 1999.

J. P. Urban and S. Roberts, Degeneration of the intervertebral disc, Arthritis Res. Ther, vol.5, pp.120-130, 2003.

S. K. Mirza and A. A. White, Anatomy of intervertebral disc and pathophysiology of herniated disc disease, J. Clin. Laser Med. Surg, vol.13, pp.131-173, 1995.

Z. Zhou, M. Gao, F. Wei, J. Liang, W. Deng et al., Shock absorbing function study on denucleated intervertebral disc with or without hydrogel injection through static and dynamic biomechanical tests in vitro, Biomed Res. Int, 2014.

B. R. Whatley and X. Wen, Intervertebral disc (IVD): Structure, degeneration, repair and regeneration, vol.32, pp.61-77, 2012.

L. A. Setton and J. Chen, Cell mechanics and mechanobiology in the intervertebral disc, vol.29, pp.2710-2723, 1976.

G. Fontana, E. See, and A. Pandit, Current trends in biologics delivery to restore intervertebral disc anabolism, Adv. Drug Deliv. Rev, vol.84, pp.146-158, 2015.

A. Maroudas, R. A. Stockwell, A. Nachemson, and J. Urban, Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro, J. Anat, vol.120, pp.113-130, 1975.

J. J. Trout, J. Buckwalter, and K. C. Moore, Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus, vol.204, pp.307-321, 1982.

J. Chen, W. Yan, and L. A. Setton, Molecular phenotypes of notochordal cells purified from nucleus pulposus via fluorescence-activated cell sorting, Eur. Cells Mater, p.16, 2005.

P. Colombier, A. Camus, L. Lescaudron, J. Clouet, and J. Guicheux, Intervertebral disc regeneration: A great challenge for tissue engineers, Trends Biotechnol, vol.32, pp.433-435, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01847223

X. Yang and X. Li, Nucleus pulposus tissue engineering: A brief review, Eur. Spine J, vol.18, pp.1564-1572, 2009.

C. J. Hunter, J. R. Matyas, and N. A. Duncan, The Notochordal Cell in the Nucleus Pulposus: A Review in the Context of Tissue Engineering, Tissue Eng, vol.9, pp.667-677, 2003.

P. Colombier, J. Clouet, O. Hamel, L. Lescaudron, and J. Guicheux, The lumbar intervertebral disc: From embryonic development to degeneration, Jt. Bone Spine, vol.81, pp.125-129, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01847263

C. J. Hunter, J. R. Matyas, and N. Duncan, The functional significance of cell clusters in the notochordal nucleus pulposus: survival and signaling in the canine intervertebral disc., Spine (Phila. Pa. 1976), vol.29, pp.1099-1104, 2004.

W. M. Erwin, K. Ashman, P. O'donnel, and R. D. Inman, Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes, Arthritis Rheum, vol.54, pp.3859-3867, 2006.

W. M. Erwin, The Notochord, Notochordal cell and CTGF/CCN-2: Ongoing activity from development through maturation, J. Cell Commun. Signal, vol.2, pp.59-65, 2008.

J. G. Abreu, N. I. Ketpura, B. Reversade, and E. M. De-robertis, Connective-tissue growth factor (ctgf) modulates cell signalling by bmp and TGF-?, Nat. Cell Biol, 2002.

T. Winkler, E. J. Mahoney, D. Sinner, C. C. Wylie, and C. L. Dahia, Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse, PLoS One, 2014.

C. L. Dahia, E. Mahoney, and C. Wylie, Shh signaling from the nucleus pulposus is required for the

M. F. and A. , Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus, pp.402-410, 1976.

J. Yu, Elastic tissues of the intervertebral disc, Biochem. Soc. Trans, vol.30, pp.848-852, 2002.

P. P. Raj, Intervertebral disc: Anatomy-physiology-pathophysiology-treatment, Pain Pract, 2008.

J. Antoniou, T. Steffen, F. Nelson, N. Winterbottom, A. P. Hollander et al., The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration, J. Clin. Invest, vol.98, pp.996-1003, 1996.

J. C. Lotz, A. J. Fields, and E. C. Liebenberg, The Role of the Vertebral End Plate in Low Back Pain, Glob. Spine J, vol.3, pp.153-163, 2013.

E. M. Bartels, J. C. Fairbank, C. P. Winlove, and J. P. Urban, Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain., Spine (Phila. Pa. 1976), vol.23, pp.1-7, 1998.

T. Grunhagen, A. Shirazi-adl, J. C. Fairbank, and J. P. Urban, Intervertebral Disk Nutrition: A Review of Factors Influencing Concentrations of Nutrients and Metabolites, Orthop. Clin. North Am, vol.42, pp.465-477, 2011.

R. Rajpurohit, M. V. Risbud, P. Ducheyne, E. J. Vresilovic, and I. M. Shapiro, Phenotypic characteristics of the nucleus pulposus: Expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2, Cell Tissue Res, vol.308, pp.401-407, 2002.

M. Risbud, A. Guttapalli, D. G. Stokes, D. Hawkins, K. G. Danielson et al., Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment, J. Cell. Biochem, vol.98, pp.152-161, 2006.

N. Kalson, S. Richardson, and J. Hoyland, Strategies for regeneration of the intervertebral disc, Regen. Med, vol.3, pp.717-729, 2008.

A. Struglics and M. Hansson, MMP proteolysis of the human extracellular matrix protein aggrecan is mainly a process of normal turnover, Biochem. J, vol.446, pp.213-223, 2012.

A. J. Pockert, S. M. Richardson, C. L. Le-maitre, M. Lyon, J. A. Deakin et al., Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration, Arthritis Rheum, vol.60, pp.482-491, 2009.

H. J. Wilke, P. Neef, M. Caimi, T. Hoogland, and L. E. Claes, New in vivo measurements of pressures in the intervertebral disc in daily life, Spine (Phila. Pa. 1976). (1999), pp.755-62, 1999.

B. Johnstone, J. P. Urban, S. Roberts, and J. Menage, The Fluid Content of the Human Intervertebral Disc. Comparison Between Fluid Content and Swelling Pressure Profiles of Discs Removed at Surgery and Those Taken Postmortem, Spine (Phila, vol.17, pp.412-416, 1976.

M. A. Adams and P. J. Roughley, What is Intervertebral Disc Degeneration, and What Causes It?, Spine (Phila. Pa, pp.2151-2161, 1976.

P. Brinckmann, W. Frobin, E. Hierholzer, and M. Horst, Deformation of the vertebral end-plate under axial loading of the spine, Spine (Phila. Pa, issue.8, pp.851-856, 1976.

N. Yoganandan, D. J. Maiman, F. Pintar, G. Ray, J. B. Myklebust et al., Microtrauma in the lumbar spine: A cause of low back pain, Neurosurgery, vol.23, pp.162-168, 1988.

S. Roberts, Disc morphology in health and disease, Biochem. Soc. Trans, 2002.

M. C. Battié, T. Videman, E. Levalahti, K. Gill, and J. Kaprio, Heritability of low back pain and the role of disc degeneration, Pain, 2007.

L. Kalichman and D. J. Hunter, The genetics of intervertebral disc degeneration, Joint. Bone. Spine, vol.75, pp.388-96, 2008.

A. G. Hadjipavlou, M. N. Tzermiadianos, N. Bogduk, and M. R. Zindrick, The pathophysiology of disc degeneration: A CRITICAL REVIEW, J. Bone Jt. Surg. -Br, vol.90, pp.1261-1270, 2008.

R. Shiri, J. Karppinen, P. Leino-arjas, S. Solovieva, and E. Viikari-juntura, The association between obesity and low back pain: A meta-analysis, Am. J. Epidemiol, 2010.

L. Manchikanti, V. Singh, S. Datta, S. P. Cohen, and J. Hirsch, Comprehensive review of epidemiology, scope, and impact of spinal pain, Pain Physician, vol.12, 2009.

S. Elmasry, S. Asfour, J. P. De-rivero, F. Vaccari, and . Travascio, Effects of tobacco smoking on the degeneration of the intervertebral disc: A finite element study, PLoS One, 2015.

A. J. Freemont, The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain, Rheumatology, vol.48, pp.5-10, 2009.

L. J. Smith, N. L. Nerurkar, K. Choi, B. D. Harfe, and D. M. Elliott, Degeneration and regeneration of the intervertebral disc: lessons from development, Dis. Model. Mech, 2011.

K. Luoma, H. Riihimäki, R. Luukkonen, R. Raininko, E. Viikari-juntura et al., Low back pain in relation to lumbar disc degeneration., Spine (Phila. Pa. 1976), vol.25, pp.487-492, 2000.

W. Erwin, D. Islam, R. D. Inman, M. G. Fehlings, and F. W. Tsui, Notochordal cells protect nucleus pulposus cells from degradation and apoptosis: implications for the mechanisms of intervertebral disc degeneration, Arthritis Res. Ther, vol.13, p.215, 2011.

P. Colombier, J. Clouet, C. Boyer, M. Ruel, G. Bonin et al., TGF-?1 and GDF5 act synergistically to drive the differentiation of human adipose stromal cells toward nucleus pulposus-like cells, Stem Cells, vol.34, pp.653-667, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01845285

J. A. Maier and B. D. Harfe, Nuclei Pulposi Formation From the Embryonic Notochord Occurs Normally in GDF-5-Deficient Mice, Spine (Phila. Pa. 1976), vol.36, pp.1555-1561, 2011.

H. E. Gruber, G. L. Hoelscher, J. A. Ingram, S. Bethea, and E. N. Hanley, Growth and differentiation factor-5 (GDF-5) in the human intervertebral annulus cells and its modulation by IL-1ss and TNFalpha in vitro, Exp. Mol. Pathol, vol.96, pp.225-229, 2014.

C. Feng, H. Liu, Y. Yang, B. Huang, and Y. Zhou, Growth and differentiation factor-5 contributes to the structural and functional maintenance of the intervertebral disc, Cell. Physiol. Biochem, vol.35, pp.1-16, 2015.

C. Weiler, A. Nerlich, J. Zipperer, B. Bachmeier, and N. Boos, SSE award competition in basic science: Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption, Eur. Spine J, vol.11, pp.308-320, 2002.

B. E. Bachmeier, A. Nerlich, N. Mittermaier, C. Weiler, C. Lumenta et al., Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration, Eur. Spine J, 2009.

M. V. Risbud and I. M. Shapiro, Role of cytokines in intervertebral disc degeneration: Pain and disc content, Nat. Rev. Rheumatol, vol.10, pp.44-56, 2014.

T. Ohba, H. Haro, T. Ando, M. Wako, F. Suenaga et al., TNF-alpha-induced NF-kappaB signaling reverses age-related declines in VEGF induction and angiogenic activity in intervertebral disc tissues, J. Orthop. Res, vol.27, pp.229-235, 2009.

J. Clouet, C. Vinatier, C. Merceron, M. Pot-vaucel, O. Hamel et al., The intervertebral disc: From pathophysiology to tissue engineering, Jt. Bone Spine, vol.76, pp.614-618, 2009.

C. A. Séguin, R. M. Pilliar, P. J. Roughley, and R. A. Kandel, Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue., Spine (Phila, 1976.

C. L. Le-maitre, A. J. Freemont, and J. A. Hoyland, The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration, Arthritis Res. Ther, 2005.

C. L. Le-maitre, J. A. Hoyland, and A. J. Freemont, Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile, Arthritis Res. Ther, 2007.

S. Roberts, H. Evans, J. Trivedi, and J. Menage, Histology and pathology of the human intervertebral disc, J. Bone Jt. Surg. -Ser. A, 2006.

N. Henry, P. Colombier, L. Lescaudron, O. Hamel, J. L. Bideau et al., Regenerative medicine of the intervertebral disc: from pathophysiology to clinical application, Med. Sci, vol.30, pp.1091-100, 2014.

T. Aigner, K. R. Gresk-otter, J. C. Fairbank, K. Mark, and J. P. Urban, Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs, Calcif. Tissue Int, vol.63, pp.263-271, 1998.

H. T. Hee, Y. J. Chuah, B. H. Tan, T. Setiobudi, and H. K. Wong, Vascularization and Morphological Changes of the Endplate After Axial Compression and Distraction of the Intervertebral Disc, Spine (Phila. Pa, vol.36, pp.505-511, 1976.

R. C. Paietta, E. L. Burger, and V. L. Ferguson, Mineralization and collagen orientation throughout aging at the vertebral endplate in the human lumbar spine, J. Struct. Biol, vol.184, pp.310-320, 2013.

Y. C. Huang, J. P. Urban, and K. D. Luk, Intervertebral disc regeneration: Do nutrients lead the way?, Nat. Rev. Rheumatol, 2014.

H. A. Horner and J. P. Urban, Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc., Spine (Phila, vol.26, pp.2543-2549, 1976.

C. K. Kepler, D. G. Anderson, C. Tannoury, and R. K. Ponnappan, Intervertebral disk degeneration and emerging biologic treatments, J. Am. Acad. Orthop. Surg, 2011.

V. Y. Leung, W. C. Chan, S. Hung, K. M. Cheung, and D. Chan, Matrix Remodeling During Intervertebral Disc Growth and Degeneration Detected by Multichromatic FAST Staining, J. Histochem. Cytochem, vol.57, pp.249-256, 2009.

F. Rannou, T. Lee, R. Zhou, J. Chin, J. C. Lotz et al., Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload, Am. J. Pathol, vol.164, issue.10, pp.63179-63182, 2004.

F. Heuer, H. Schmidt, and H. J. Wilke, The relation between intervertebral disc bulging and annular fiber associated strains for simple and complex loading, J. Biomech, 2008.

M. A. Adams, P. Lama, U. Zehra, and P. Dolan, Why do some intervertebral discs degenerate, when others (in the same spine) do not?, Clin. Anat, 2015.

N. Schwarz, Retrospective and Concurrent Self-Reports: The Rationale for Real-Time Data Capture, Sci. Real-Time Data Capture Self-Reports Heal. Res, pp.11-26, 2007.

A. Kongsted and C. Leboeuf-yde, The Nordic back pain subpopulation program -individual patterns of low back pain established by means of text messaging: a longitudinal pilot study, Chiropratic Osteopat, vol.27, pp.493-502, 2009.

C. Maher, M. Underwood, and R. Buchbinder, Non-specific low back pain, Lancet, vol.389, issue.16, pp.30970-30979, 2017.

M. T. Modic, P. M. Steinberg, J. S. Ross, T. J. Masaryk, and J. R. Carter, Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging, Radiology, vol.166, pp.193-199, 1988.

C. W. Pfirrmann, A. Metzdorf, M. Zanetti, J. Hodler, and N. Boos, Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration, Spine (Phila. Pa. 1976), vol.26, pp.1873-1878, 2001.

D. G. Anderson and C. Tannoury, Molecular pathogenic factors in symptomatic disc degeneration, Spine J, vol.5, 2005.

A. Durocher and S. Laversin, Diagnostic, prise en charge et suivi des malades atteints de lombalgie chronique, 2000.

R. Chou, A. Qaseem, V. Snow, D. Casey, T. J. Cross et al., Diagnosis and treatment of low back pain: A joint clinical practice guideline from the American College of Physicians and the American Pain Society, Ann. Intern. Med, vol.147, pp.478-491, 2007.

M. A. Stafford, P. Peng, and D. A. Hill, Sciatica: A review of history, epidemiology, pathogenesis, and the role of epidural steroid injection in management, Br. J. Anaesth, vol.99, pp.461-473, 2007.

L. Kuritzky and G. P. Samraj, Nonsteroidal anti-inflammatory drugs in the treatment of low back pain, J. Pain Res, vol.5, pp.579-590, 2012.

B. I. Martin, R. A. Deyo, S. K. Mirza, J. A. Turner, B. A. Comstock et al., Expenditures and health status among adults with back and neck problems, JAMA -J. Am. Med. Assoc, vol.299, pp.656-664, 2008.

C. M. Bono and S. R. Garfin, History and evolution of disc replacement, Spine J, vol.4, 2004.

K. D. Van-den, R. W. Eerenbeemt, B. J. Ostelo, W. C. Van-royen, M. W. Peul et al., Total disc replacement surgery for symptomatic degenerative lumbar disc disease: A systematic review of the literature, Eur. Spine J, vol.19, pp.1262-1280, 2010.

R. A. Deyo and S. K. Mirza, Trends and variations in the use of spine surgery, Clin. Orthop. Relat. Res, pp.139-146, 2006.

P. P. Vergroesen, I. Kingma, K. S. Emanuel, R. J. Hoogendoorn, T. J. Welting et al., Mechanics and biology in intervertebral disc degeneration: A vicious circle, vol.23, pp.1057-1070, 2015.

D. J. Buttle, Factors controlling matrix turnover in health and disease, Biochem. Soc. Trans, vol.35, pp.643-646, 2007.

N. Henry, J. Clouet, J. L. Bideau, C. L. Visage, and J. Guicheux, Innovative strategies for intervertebral disc regenerative medicine: From cell therapies to multiscale delivery systems, Biotechnol. Adv, vol.36, pp.281-294, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01718260

G. Vadalà, F. Russo, G. Pattappa, D. Schiuma, M. Peroglio et al., The transpedicular approach as an alternative route for intervertebral disc regeneration, Spine (Phila, 1976.

L. L. Fournier, M. Fusellier, B. Halgand, J. Lesoeur, O. Gauthier et al.,

J. Guicheux and . Clouet, The transpedicular surgical approach for the development of intervertebral disc targeting regenerative strategies in an ovine model, Eur. Spine J, issue.8, pp.2072-2083, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01563201

J. Clouet, M. Fusellier, A. Camus, C. L. Visage, and J. Guicheux, Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies, Adv. Drug Deliv. Rev, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01843976

S. Seki, Y. Asanuma-abe, K. Masuda, Y. Kawaguchi, K. Asanuma et al., Effect of small interference RNA (siRNA) for ADAMTS5 on intervertebral disc degeneration in the rabbit anular needle-puncture model, Arthritis Res. Ther, 2009.

S. K. Leckie, B. P. Bechara, R. A. Hartman, G. A. Sowa, B. I. Woods et al., Injection of AAV2-BMP2 and AAV2-TIMP1 into the nucleus pulposus slows the course of intervertebral disc degeneration in an in vivo rabbit model, Spine J, 2012.

S. Genevay, S. Stingelin, and C. Gabay, Efficacy of etanercept in the treatment of acute, severe sciatica: A pilot study, Ann. Rheum. Dis, 2004.

S. Genevay, A. Finckh, P. Zufferey, S. Viatte, F. Balagué et al., Adalimumab in acute sciatica reduces the long-term need for surgery: A 3-year follow-up of a randomised double-blind placebocontrolled trial, Ann. Rheum. Dis, 2012.

S. Genevay, S. Viatte, A. Finckh, P. Zufferey, F. Balagué et al., Adalimumab in severe and acute sciatica: A multicenter, randomized, double-blind, placebo-controlled trial, Arthritis Rheum, 2010.

S. P. Cohen, N. Bogduk, A. Dragovich, C. C. Buckenmaier, S. Griffith et al., Randomized, double-blind, placebo-controlled, doseresponse, and preclinical safety study of transforaminal epidural etanercept for the treatment of sciatica, Anesthesiology, 2009.

E. Tobinick and S. Davoodifar, Efficacy of etanercept delivered by perispinal administration for chronic back and/or neck disc-related pain: a study of clinical observations in 143 patients, Curr. Med. Res. Opin, 2004.

T. Korhonen, J. Karppinen, L. Paimela, A. Malmivaara, K. Lindgren et al., The treatment of disc-herniation-induced sciatica with infliximab: one-year follow-up results of FIRST II, Spine (Phila. Pa, 1976.

D. J. Gorth, R. L. Mauck, J. A. Chiaro, B. Mohanraj, N. M. Hebela et al., IL-1ra delivered from poly(lactic-co-glycolic acid) microspheres attenuates IL-1?-mediated degradation of nucleus pulposus in vitro, Arthritis Res. Ther, 2012.

C. L. Le-maitre, J. A. Hoyland, and A. J. Freemont, Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: An in situ zymographic and gene therapy study, Arthritis Res. Ther, 2007.

S. M. Sinclair, M. F. Shamji, J. Chen, L. Jing, W. J. Richardson et al., Attenuation of inflammatory events in human intervertebral disc cells with a tumor necrosis factor antagonist, Spine (Phila, 1976.

B. A. Walter, D. Purmessur, M. Likhitpanichkul, A. Weinberg, S. K. Cho et al., Inflammatory kinetics and efficacy of anti-inflammatory treatments on human nucleus pulposus cells, Spine (Phila, 1976.

R. K. Studer, L. G. Gilbertson, H. Georgescu, G. Sowa, N. Vo et al., p38 MAPK inhibition modulates rabbit nucleus pulposus cell response to IL-1, J. Orthop. Res, vol.26, pp.991-998, 2008.

M. Klawitter, L. Quero, J. Klasen, T. Liebscher, A. Nerlich et al., Triptolide exhibits anti-inflammatory, anti-catabolic as well as anabolic effects and suppresses TLR expression and MAPK activity in IL-1? treated human intervertebral disc cells, Eur. Spine J, 2012.

M. H. Hu, K. C. Yang, Y. J. Chen, Y. H. Sun, and S. H. Yang, Lovastatin prevents discography-associated degeneration and maintains the functional morphology of intervertebral discs, Spine J, 2014.

G. Q. Teixeira, C. Pereira, F. Castro, J. R. Ferreira, M. Gomez-lazaro et al., Anti-inflammatory Chitosan/Poly-?-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc, Acta Biomater, 2016.

L. A. Nasto, H. Y. Seo, A. R. Robinson, J. S. Tilstra, C. L. Clauson et al., ISSLS prize winner: Inhibition of NF-?B activity ameliorates age-associated disc degeneration in a mouse model of accelerated aging, Spine (Phila, 1976.

K. Takegami, E. J. Thonar, H. S. An, H. Kamada, and K. Masuda, Osteogenic protein-1 enhances matrix replenishment by intervertebral disc cells previously exposed to interleukin-1, in: Spine (Phila, 1976.

K. Masuda, K. Takegami, H. An, F. Kumano, K. Chiba et al., Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads, J. Orthop. Res, 2003.

K. Takegami, H. S. An, F. Kumano, K. Chiba, E. J. Thonar et al., Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis, Spine J, 2005.

Y. Imai, K. Miyamoto, H. S. An, E. J. Thonar, G. B. Andersson et al., Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells, Spine (Phila, 1976.

Z. Wang, W. C. Hutton, and S. T. Yoon, Bone morphogenetic protein-7 antagonizes tumor necrosis factor-?-induced activation of nuclear factor ?b and up-regulation of the ADAMTS, leading to decreased degradation of disc matrix macromolecules aggrecan and collagen II, Spine J, 2014.

Y. Imai, H. An, C. Nguyen, C. Muehleman, E. Thonar et al., Chondroitinase ABC-induced intervertebral disc degeneration is minimized when the enzyme is co-injected with osteogenic protein-1, Spine J, 2002.

K. Masuda, Y. Imai, M. Okuma, C. Muehleman, K. Nakagawa et al., Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model, Spine (Phila, 1976.

K. Miyamoto, K. Masuda, J. G. Kim, N. Inoue, K. Akeda et al., Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs, Spine J, 2006.

H. S. An, K. Takegami, H. Kamada, C. M. Nguyen, E. J. Thonar et al., Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal a, Spine (Phila, 1976.

S. Chubinskaya, M. Kawakami, L. Rappoport, T. Matsumoto, N. Migita et al., Anticatabolic effect of OP-1 in chronically compressed intervertebral discs, J. Orthop. Res, 2007.

M. K. Pichika, R. , A. H. Asanuma, K. Tonomura, H. Lenz et al., Intradiscal injection of recombinant human bone morphogenetic protein-7 significantly suppressed the expression of cytokines and catabolic enzymes in the rabbit anular puncture model, Ortho Res Soc Trans, vol.33, p.1289, 2008.

N. Willems, F. C. Bach, S. G. Plomp, M. H. Van-rijen, J. Wolfswinkel et al., Intradiscal application of rhBMP-7 does not induce regeneration in a canine model of spontaneous intervertebral disc degeneration, Arthritis Res. Ther, 2015.

S. T. Yoon, K. S. Kim, J. Li, J. S. Park, T. Akamaru et al., The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro, Spine (Phila. Pa, 1976.

J. Li, S. T. Yoon, and W. C. Hutton, Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells, J. Spinal Disord. Tech, 2004.

C. Feng, H. Liu, Y. Yang, B. Huang, and Y. Zhou, Growth and differentiation factor-5 contributes to the structural and functional maintenance of the intervertebral disc, Cell. Physiol. Biochem, vol.35, pp.1-16, 2015.

X. Li, B. M. Leo, G. Beck, G. Balian, and D. G. Anderson, Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor, Spine (Phila, 1976.

H. Wang, M. Kroeber, M. Hanke, R. Ries, C. Schmid et al., Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells, J. Mol. Med, 2004.

M. Cui, Y. Wan, D. G. Anderson, F. H. Shen, B. M. Leo et al., Mouse growth and differentiation factor-5 protein and DNA therapy potentiates intervertebral disc cell aggregation and chondrogenic gene expression, Spine J, 2008.

T. Chujo, H. S. An, K. Akeda, K. Miyamoto, C. Muehleman et al., Effects of growth differentiation factor-5 on the intervertebral disc -In vitro bovine study and in vivo rabbit disc degeneration model study, pp.2909-2917, 1976.

S. Illien-jünger, G. Pattappa, M. Peroglio, L. M. Benneker, M. J. Stoddart et al., Homing of Mesenchymal Stem Cells in Induced Degenerative Intervertebral Discs in a Whole Organ Culture System, Spine (Phila, pp.1865-1873, 1976.

W. Chen, W. Lo, J. Lee, and C. Su,

W. Huang and . Deng, Tissue-engineered intervertebral disc and chondrogenesis using human nucleus pulposus regulated through TGF-beta1 in platelet-rich plasma, J. Cell. Physiol, 2006.

K. Akeda, H. S. An, R. Pichika, M. Attawia, E. J. Thonar et al., Platelet-rich plasma (PRP) stimulates the extracellular matrix metabolism of porcine nucleus pulposus and anulus fibrosus cells cultured in alginate beads, Spine (Phila. Pa, 1976.

H. Kim, J. S. Yeom, Y. Koh, J. Yeo, K. Kang et al., Anti-inflammatory effect of platelet-rich plasma on nucleus pulposus cells with response of TNF-? and IL-1, J. Orthop. Res, 2014.

S. Obata, K. Akeda, T. Imanishi, K. Masuda, W. Bae et al., Effect of autologous platelet-rich plasma-releasate on intervertebral disc degeneration in the rabbit anular puncture model: A preclinical study, Arthritis Res. Ther, 2012.

I. D. Gelalis, G. Christoforou, A. Charchanti, I. Gkiatas, E. Pakos et al., Autologous platelet-rich plasma (PRP) effect on intervertebral disc restoration: an experimental rabbit model, Eur. J. Orthop. Surg. Traumatol, 2018.

K. Comella, S. Robert, and P. Michelle, Effects of the intradiscal implantation of stromal vascular fraction plus platelet rich plasma in patients with degenerative disc disease, J. Transl. Med, 2017.

Y. A. Tuakli-wosornu, A. Terry, K. Boachie-adjei, J. R. Harrison, C. K. Gribbin et al., Lumbar Intradiskal Platelet-Rich Plasma (PRP) Injections: A Prospective, Double-Blind, 2016.

F. Mwale, K. Masuda, R. Pichika, L. M. Epure, T. Yoshikawa et al., The efficacy of Link N as a mediator of repair in a rabbit model of intervertebral disc degeneration, Arthritis Res. Ther, 2011.

E. S. Vasiliadis, S. G. Pneumaticos, D. S. Evangelopoulos, and A. G. Papavassiliou, Biologic Treatment of Mild and Moderate Intervertebral Disc Degeneration, Mol. Med, vol.20, issue.18, pp.400-409, 2014.

K. Ma, Y. Wu, B. Wang, S. Yang, Y. Wei et al., Effect of a synthetic link N peptide nanofiber scaffold on the matrix deposition of aggrecan and type II collagen in rabbit notochordal cells

, Mater. Sci. Mater. Med, 2013.

R. Gawri, J. Antoniou, J. Ouellet, W. Awwad, T. Steffen et al., Best paper NASS 2013: Link-N can stimulate proteoglycan synthesis in the degenerated human intervertebral discs, Eur. Cells Mater, 2013.

F. Mwale, H. T. Wang, P. Roughley, J. Antoniou, and L. Haglund, Link N and mesenchymal stem cells can induce regeneration of the early degenerate intervertebral disc, Tissue Eng. Part A, 2014.

S. Moon, K. Nishida, L. G. Gilbertson, H. Lee, H. Kim et al., Biologic Response of Human Intervertebral Disc Cells to Gene Therapy Cocktail, Spine (Phila, 1976.

K. Lee, S. H. Moon, H. Kim, U. H. Kwon, H. J. Kim et al., Tissue engineering of the intervertebral disc with cultured nucleus pulposus cells using atelocollagen scaffold and growth factors, 1976.

H. Cho, S. Lee, S. Park, J. Huang, K. A. Hasty et al., Synergistic Effect of Combined Growth Factors in Porcine Intervertebral Disc Degeneration, Connect. Tissue Res, 2013.

A. A. Hegewald, S. Zouhair, M. Endres, M. Cabraja, C. Woiciechowsky et al., Towards biological anulus repair: TGF-?3, FGF-2 and human serum support matrix formation by human anulus fibrosus cells, Tissue Cell, 2013.

C. L. Le-maitre, A. J. Freemont, and J. A. Hoyland, Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells, Arthritis Res. Ther, vol.11, p.137, 2009.

S. Ren, Y. J. Liu, J. Ma, Z. Diao, D. Yang et al., Treatment of rabbit intervertebral disc degeneration with co-transfection by adeno-associated virus-mediated SOX9 and osteogenic protein-1 double genes in vivo, Int. J. Mol. Med, 2013.

A. J. Walsh, D. S. Bradford, and J. C. Lotz, In Vivo Growth Factor Treatment of Degenerated Intervertebral Discs, 1976.

H. Henriksson, M. Thornemo, C. Karlsson, O. Hägg, K. Junevik et al., Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species., Spine (Phila, vol.34, pp.2278-87, 1976.

H. Brisby, N. Papadimitriou, C. Brantsing, P. Bergh, A. Lindahl et al., The Presence of Local Mesenchymal Progenitor Cells in Human Degenerated Intervertebral Discs and Possibilities to Influence These In Vitro: A Descriptive Study in Humans, Stem Cells Dev, vol.22, pp.804-814, 2013.

J. F. Blanco, I. F. Graciani, F. M. Sanchez-guijo, S. Muntión, P. Hernandez-campo et al., Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects., Spine (Phila, vol.35, pp.2259-2265, 1976.

M. V. Risbud, A. Guttapalli, T. Tsai, J. Y. Lee, K. G. Danielson et al., Evidence for Skeletal Progenitor Cells in the Degenerate Human Intervertebral Disc, vol.32, pp.2537-2544, 1976.

C. Liu, Q. Guo, J. Li, S. Wang, Y. Wang et al., Identification of rabbit annulus fibrosusderived stem cells, PLoS One, vol.9, 2014.

D. Sakai, Y. Nakamura, T. Nakai, T. Mishima, S. Kato et al., Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc, Nat. Commun, vol.3, p.1264, 2012.

S. Turner, B. Balain, B. Caterson, C. Morgan, and S. Roberts, Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies, Eur. Spine J, vol.23, pp.2462-2472, 2014.

X. Li, Y. Tang, J. Wu, P. Yang, D. Wang et al., Characteristics and potentials of stem cells derived from human degenerated nucleus pulposus: potential for regeneration of the intervertebral disc, BMC Musculoskelet. Disord, vol.18, p.242, 2017.

G. Feng, X. Yang, H. Shang, I. W. Marks, F. H. Shen et al., Multipotential Differentiation of Human Anulus Fibrosus Cells, J. Bone Jt. Surgery-American, vol.92, pp.675-685, 2010.

H. E. Gruber, F. E. Riley, G. L. Hoelscher, J. A. Ingram, L. Bullock et al., Human annulus progenitor cells: Analyses of this viable endogenous cell population, J. Orthop. Res, vol.34, pp.1351-1360, 2016.

S. Liu, H. Liang, S. M. Lee, Z. Li, J. Zhang et al., Isolation and identification of stem cells from degenerated human intervertebral discs and their migration characteristics, Acta Biochim. Biophys. Sin, 2017.

H. Wang, Y. Zhou, T. W. Chu, C. Q. Li, J. Wang et al., Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs, Eur. Spine J, vol.25, pp.2691-2704, 2016.

H. Wang, Y. Zhou, B. Huang, L. Liu, M. Liu et al., Utilization of Stem Cells in Alginate for Nucleus Pulposus Tissue Engineering, Tissue Eng. Part A, vol.20, pp.908-920, 2014.

L. T. Liu, B. Huang, C. Q. Li, Y. Zhuang, J. Wang et al., Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate, PLoS One, vol.6, 2011.

J. Lu, X. Shen, X. Sun, H. Yin, S. Yang et al., Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration, Theranosctics, vol.8, pp.5039-5058, 2018.

S. Bollini, A. Smits, C. Balbi, E. Lazzarini, and P. Ameri, Triggering Endogenous Cardiac Repair and Regeneration via Extracellular Vesicle-Mediated Communication, Front Physiol, vol.9, p.1497, 2018.

C. H. Lee, F. Y. Lee, S. Tarafder, K. Kao, Y. Jun et al., Harnessing endogenous stem/progenitor cells for tendon regeneration, J. Clin. Invest, 2015.

K. Ma, S. Chen, Z. Li, X. Deng, D. Huang et al., Mechanisms of endogenous repair failure during intervertebral disc degeneration, Osteoarthritis Cartilage, 2018.

H. B. Henriksson, E. Svala, E. Skioldebrand, A. Lindahl, and H. Brisby, Support of Concept That Migrating Progenitor Cells From Stem Cell Niches Contribute to Normal Regeneration of the Adult Mammal Intervertebral Disc, Spine (Phila. Pa. 1976), vol.37, pp.722-732, 2012.

H. B. Henriksson, N. Papadimitriou, S. Tschernitz, E. Svala, E. Skioldebrand et al., Indications of that migration of stem cells is influenced by the extra cellular matrix architecture in the mammalian intervertebral disk region, Tissue Cell, vol.47, pp.439-455, 2015.

G. Pattappa, M. Peroglio, D. Sakai, J. Mochida, L. M. Benneker et al., CCL5/rantes is a key chemoattractant released by degenerative intervertebral discs in organ culture, Eur. Cells Mater, 2014.

C. K. Kepler, D. Z. Markova, F. Dibra, S. Yadla, A. R. Vaccaro et al., Expression and relationship of proinflammatory chemokine RANTES/CCL5 and cytokine IL-1 ? in painful human intervertebral discs, Spine (Phila, 1976.

C. L. Pereira, R. M. Gonçalves, M. Peroglio, G. Pattappa, M. D'este et al., The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs, Biomaterials, vol.35, pp.8144-8153, 2014.

C. L. Pereira, G. Q. Teixeira, C. Ribeiro-machado, J. Caldeira, M. Costa et al., Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling, Sci. Rep, vol.6, p.33836, 2016.

G. Vadalà, F. Russo, L. Ambrosio, M. Loppini, and V. Denaro, Stem cells sources for intervertebral disc regeneration, World J. Stem Cells, 2016.

S. B. Blanquer, D. W. Grijpma, and A. A. Poot, Delivery systems for the treatment of degenerated intervertebral discs, Adv. Drug Deliv. Rev, vol.84, pp.172-187, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01833132

D. Sakai and G. B. Andersson, Stem cell therapy for intervertebral disc regeneration: Obstacles and solutions, Nat. Rev. Rheumatol, 2015.

C. Hohaus, T. M. Ganey, Y. Minkus, and H. J. Meisel, Cell transplantation in lumbar spine disc degeneration disease, Eur. Spine J, 2008.

H. J. Meisel, V. Siodla, T. Ganey, Y. Minkus, W. C. Hutton et al., Clinical experience in cell-based therapeutics: Disc chondrocyte transplantation. A treatment for degenerated or damaged intervertebral disc, Biomol. Eng, vol.24, pp.5-21, 2007.

H. J. Meisel, T. Ganey, W. C. Hutton, J. Libera, Y. Minkus et al., Clinical experience in cellbased therapeutics: Intervention and outcome, in: Eur, Spine J, 2006.

G. Paesold, A. G. Nerlich, and N. Boos, Biological treatment strategies for disc degeneration: Potentials and shortcomings, Eur. Spine J, 2007.

A. A. Hegewald, M. Endres, A. Abbushi, M. Cabraja, C. Woiciechowsky et al., Adequacy of herniated disc tissue as a cell source for nucleus pulposus regeneration, J. Neurosurg. Spine, 2011.

T. Watanabe, D. Sakai, Y. Yamamoto, T. Iwashina, K. Serigano et al., Human nucleus pulposus cells significantly enhanced biological properties in a coculture system with direct cell-to-cell contact with autologous mesenchymal stem cells, J. Orthop. Res, 2010.

Y. Yamamoto, J. Mochida, D. Sakai, T. Nakai, K. Nishimura et al., Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: Significance of direct cell-to-cell contact in coculture system, Spine (Phila. Pa, 1976.

M. Okuma, J. Mochida, K. Nishimura, K. Sakabe, and K. Seiki, Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study, J. Orthop. Res, 2000.

S. M. Richardson, N. Hughes, J. A. Hunt, A. J. Freemont, and J. A. Hoyland, Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels, Biomaterials, vol.29, pp.85-93, 2008.

H. B. Henriksson, T. Svanvik, M. Jonsson, M. Hagman, M. Horn et al., Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model, Spine (Phila, vol.34, pp.141-148, 1976.

K. Serigano, D. Sakai, A. Hiyama, F. Tamura, M. Tanaka et al., Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model, J. Orthop. Res, 2010.

M. Gorensek, C. Jaksimovi?, N. Kregar-velikonja, M. Gorensek, M. Knezevic et al., Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes, Cell. Mol. Biol. Lett, 2004.

F. L. Acosta, L. Metz, H. D. Adkisson, J. Liu, E. Carruthers-liebenberg et al., Porcine Intervertebral Disc Repair Using Allogeneic Juvenile Articular Chondrocytes or Mesenchymal Stem Cells, 2011.

M. B. Murphy, K. Moncivais, and A. I. Caplan, Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine, Exp. Mol. Med, 2013.

J. V. Stoyanov, B. Gantenbein-ritter, A. Bertolo, N. Aebli, M. Baur et al., Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells, Eur. Cells Mater, vol.21, pp.533-547, 2011.

K. Xia, J. Zhu, J. Hua, Z. Gong, C. Yu et al., Intradiscal Injection of Induced Pluripotent Stem Cell-Derived Nucleus Pulposus-Like Cell-Seeded Polymeric Microspheres Promotes Rat Disc Regeneration, Stem Cells Int, 2019.

M. Risbud, T. J. Albert, A. Guttapalli, E. J. Vresilovic, A. S. Hillibrand et al., Differentiation of Mesenchymal Stem Cells Towards a Nucleus Pulposus-like Phenotype In Vitro: Implications for Cell-Based Transplantation Therapy, Spine (Phila, vol.29, pp.2627-2632, 1976.

C. Merceron, S. Portron, C. Vignes-colombeix, E. Rederstorff, M. Masson et al., Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically oversulfated polysaccharide of marine origin: Potential application to cartilage regenerative medicine, Stem Cells, 2012.

S. Portron, C. Merceron, O. Gauthier, J. Lesoeur, S. Sourice et al., Effects of In Vitro Low Oxygen Tension Preconditioning of Adipose Stromal Cells on Their In Vivo Chondrogenic Potential: Application in Cartilage Tissue Repair, PLoS One, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01847981

B. Gantenbein-ritter, L. M. Benneker, M. Alini, and S. Grad, Differential response of human bone marrow stromal cells to either TGF-?(1) or rhGDF-5, Eur. Spine J, vol.20, pp.962-71, 2011.

J. V. Stoyanov, B. Gantenbein-ritter, A. Bertolo, N. Aebli, M. Baur et al., Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells, Eur. Cells Mater, 2011.

L. E. Clarke, J. C. Mcconnell, M. J. Sherratt, B. Derby, S. M. Richardson et al., Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs, Arthritis Res. Ther, vol.16, p.67, 2014.

S. Sobajima, G. Vadala, A. Shimer, J. S. Kim, L. G. Gilbertson et al., Feasibility of a stem cell therapy for intervertebral disc degeneration, Spine J, 2008.

G. Vadala, &. , S. Sobajima, J. Y. Lee, J. Huard et al., In vitro interaction between muscle-derived stem cells and nucleus pulposus cells, Spine J, 2008.

S. M. Richardson, R. V. Walker, S. Parker, N. P. Rhodes, J. A. Hunt et al., Intervertebral Disc Cell-Mediated Mesenchymal Stem Cell Differentiation, Stem Cells, vol.24, pp.707-716, 2006.

C. L. Visage, S. W. Kim, K. Tateno, A. N. Sieber, J. P. Kostuik et al., Interaction of human mesenchymal stem cells with disc cells: Changes in extracellular matrix biosynthesis, Spine (Phila, 1976.

Z. Han, J. Wang, L. Gao, Q. Wang, and J. Wu, Aberrantly expressed messenger RNAs and long noncoding RNAs in degenerative nucleus pulposus cells co-cultured with adipose-derived mesenchymal stem cells, Arthritis Res. Ther, 2018.

M. F. Pittenger, Multilineage Potential of Adult Human Mesenchymal Stem Cells, p.80, 1999.

G. Vadalà, R. K. Studer, G. Sowa, F. Spiezia, C. Iucu et al., Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion, Spine (Phila, 1976.

Z. F. Lu, B. Doulabi, P. I. Wuisman, R. A. Bank, and M. N. Helder, Differentiation of adipose stem cells by nucleus pulposus cells: Configuration effect, Biochem. Biophys. Res. Commun, 2007.

A. Uccelli, L. Moretta, and V. Pistoia, Immunoregulatory function of mesenchymal stem cells, Eur. J. Immunol, 2006.

F. Gao, S. M. Chiu, D. A. Motan, Z. Zhang, L. Chen et al., Mesenchymal stem cells and immunomodulation: current status and future prospects, Cell Death Dis, 2016.

G. Feng, X. Zhao, H. Liu, H. Zhang, X. Chen et al., Transplantation of mesenchymal stem cells and nucleus pulposus cells in a degenerative disc model in rabbits: a comparison of 2 cell types as potential candidates for disc regeneration, J. Neurosurg. Spine, 2011.

H. B. Henriksson, M. Hagman, M. Horn, A. Lindahl, and H. Brisby, Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies, J. Tissue Eng. Regen. Med, 2012.

J. D. Prologo, A. Pirasteh, N. Tenley, L. Yuan, D. Corn et al., Percutaneous image-guided delivery for the transplantation of mesenchymal stem cells in the setting of degenerated intervertebral discs, J. Vasc. Interv. Radiol, 2012.

Y. Zhang, X. Guo, P. Xu, L. Kang, and J. Li, Bone Mesenchymal Stem Cells Transplanted into Rabbit Intervertebral Discs Can Increase Proteoglycans, Clin. Orthop. Relat. Res, 2005.

C. Ma, X. Liu, L. Che, Z. Liu, D. Samartzis et al., Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery, Curr. Stem Cell Res. Ther, 2015.

C. Elabd, C. J. Centeno, J. R. Schultz, G. Lutz, T. Ichim et al., Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: A long-term safety and feasibility study, J. Transl. Med, 2016.

T. Yoshikawa, Y. Ueda, K. Miyazaki, M. Koizumi, and Y. Takakura, Disc regeneration therapy using marrow mesenchymal cell transplantation: A report of two case studies, Spine (Phila. Pa, 1976.

L. Orozco, R. Soler, C. Morera, M. Alberca, A. Sánchez et al., Intervertebral disc repair by autologous mesenchymal bone marrow cells: A pilot study, Transplantation, vol.92, pp.822-828, 2011.

Y. Sun, V. Leung, and K. ,

. Cheung, Clinical trials of intervertebral disc regeneration: current status and future developments, Int Orthop, 2018.

K. Pettine, R. Suzuki, T. Sand, and M. Murphy, Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up, Int. Orthop, 2016.

K. A. Pettine, R. K. Suzuki, T. T. Sand, and M. B. Murphy, Autologous bone marrow concentrate intradiscal injection for the treatment of degenerative disc disease with three-year follow-up, Int. Orthop, 2017.

S. Z. Wang, J. Y. Jin, Y. D. Guo, L. Y. Ma, Q. Chang et al., Intervertebral disc regeneration using platelet-rich plasma-containing bone marrow-derived mesenchymal stem cells: A preliminary investigation, Mol. Med. Rep, 2016.

M. Tkach and C. Théry, Communication by Extracellular Vesicles: Where We Are and Where We Need to Go, Cell, 2016.

J. Malda, J. Boere, C. H. Van-de-lest, P. R. Van-weeren, and M. H. Wauben, Extracellular vesicles -New tool for joint repair and regeneration, Nat. Rev. Rheumatol, 2016.

A. M. Silva, J. H. Teixeira, M. I. Almeida, R. M. Gonçalves, M. A. Barbosa et al., Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration, Eur. J. Pharm. Sci, 2017.

B. Zhang, M. Wang, A. Gong, X. Zhang, X. Wu et al., HucMSc-exosome mediated-Wnt4 signaling is required for cutaneous wound healing, Stem Cells, 2015.

M. Tofiño-vian, M. I. Guillén, M. D. Pérez-del-caz, A. Silvestre, and M. J. Alcaraz, Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes, Cell. Physiol. Biochem, 2018.

W. S. Toh, R. C. Lai, J. H. Hui, and S. K. Lim, MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment, Semin. Cell Dev. Biol, 2017.

K. Lu, H. Li, K. Yang, J. Wu, X. Cai et al., Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells, Stem Cell Res. Ther, 2017.

F. Bach, S. Libregts, L. Creemers, B. Meij, K. Ito et al., Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells, Oncotarget, 2017.

A. I. Chou, S. O. Akintoye, and S. B. Nicoll, Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo, Osteoarthritis Cartilage, vol.17, issue.10, pp.1377-84, 2009.

M. S. Gupta, E. S. Cooper, and S. B. Nicoll, Transforming Growth Factor-Beta 3 Stimulates Cartilage Matrix Elaboration by Human Marrow-Derived Stromal Cells Encapsulated in Photocrosslinked Carboxymethylcellulose Hydrogels: Potential for Nucleus Pulposus Replacement, Tissue Eng. Part A, pp.2903-2913, 2011.

E. M. Schutgens, M. A. Tryfonidou, T. H. Smit, F. Öner, A. Krouwels et al., Biomaterials for intervertebral disc regeneration: Past performance and possible future strategies, Eur. Cells Mater, 2015.

A. D. Martino, M. Sittinger, and M. V. Risbud, Chitosan: A versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, 2005.

T. Dai, M. Tanaka, Y. Y. Huang, and M. R. Hamblin, Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects, Expert Rev. Anti. Infect. Ther, 2011.

B. Chen, W. Dai, B. He, H. Zhang, X. Wang et al., Current multistage drug delivery systems based on the tumor microenvironment, Theranostics, 2017.

N. Kamaly, B. Yameen, J. Wu, and O. C. Farokhzad, Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release, Chem. Rev, 2016.

E. Mauri, S. Papa, M. Masi, P. Veglianese, and F. Rossi, Novel functionalization strategies to improve drug delivery from polymers, Expert Opin. Drug Deliv, 2017.

V. Delplace, J. Obermeyer, and M. S. Shoichet, Local Affinity Release, ACS Nano, 2016.

V. E. Santo, M. E. Gomes, J. F. Mano, and R. L. Reis, Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering-Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery, Tissue Eng. Part B Rev, vol.87, pp.90067-90070, 2013.

V. E. Santo, M. Gomes, J. Mano, and R. L. Reis, Controlled release strategies for bone, cartilage and osteochondral engineering -Part I: Recapitulation of native tissue healing and variables for the design of delivery systems, Tissue Eng. Part B, 2012.

J. Lam, S. Lu, F. K. Kasper, and A. G. Mikos, Strategies for controlled delivery of biologics for cartilage repair, Adv. Drug Deliv. Rev, 2015.

M. Mehta, K. Schmidt-bleek, G. N. Duda, and D. J. Mooney, Biomaterial delivery of morphogens to mimic the natural healing cascade in bone ?, Adv. Drug Deliv. Rev, 2012.

J. Li and D. J. Mooney, Designing hydrogels for controlled drug delivery, Nat. Rev. Mater, 2016.

K. Flégeau, R. Pace, H. Gautier, G. Rethore, J. Guicheux et al., Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine, Adv. Colloid Interface Sci, vol.247, pp.589-609, 2017.

S. Kim, Y. Kang, C. A. Krueger, M. Sen, J. B. Holcomb et al., Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation, Acta Biomater, 2012.

E. A. Bayer, J. Jordan, A. Roy, R. Gottardi, M. V. Fedorchak et al., Programmed Platelet-Derived Growth Factor-BB and Bone Morphogenetic Protein-2 Delivery from a Hybrid Calcium Phosphate/Alginate Scaffold, Tissue Eng. Part A, 2017.

N. Joshi, J. Yan, S. Levy, S. Bhagchandani, K. V. Slaughter et al.,

J. Aliprantis, J. M. Ermann, and . Karp, Towards an arthritis flare-responsive drug delivery system, Nat. Commun, 2018.

D. Beall, T. R. Deer, J. Wilsey, A. Walsh, J. H. Block et al., Tissue distribution of clonidine following intraforaminal implantation of biodegradable pellets: potential alternative to epidural steroid for radiculopathy, J. Vasc. Interv. Radiol, 2013.

J. E. Frith, D. J. Menzies, A. R. Cameron, P. Ghosh, D. L. Whitehead et al.,

J. J. Zannettino and . Cooper-white, Effects of bound versus soluble pentosan polysulphate in PEG/HAbased hydrogels tailored for intervertebral disc regeneration, Biomaterials, 2014.

Y. Zhu, J. Tan, H. Zhu, G. Lin, F. Yin et al., Development of kartogenin-conjugated chitosan-hyaluronic acid hydrogel for nucleus pulposus regeneration, Biomater. Sci, 2017.

M. S. Gupta and S. B. Nicoll, Duration of TGF-?3 Exposure Impacts the Chondrogenic Maturation of Human MSCs in Photocrosslinked Carboxymethylcellulose Hydrogels, Ann. Biomed. Eng, 2015.

J. W. Lee, T. H. Lim, and J. B. Park, Intradiscal drug delivery system for the treatment of low back pain, J. Biomed. Mater. Res. -Part A, 2010.

E. Wenk, A. J. Meinel, S. Wildy, H. P. Merkle, and L. Meinel, Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering, Biomaterials, 2009.

V. P. Mantripragada and A. C. Jayasuriya, IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions, Mater. Sci. Eng. C, 2014.

N. Henry, J. Clouet, A. Fragale, L. Griveau, C. Chédeville et al., Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-?1: new insight into intervertebral disc regenerative medicine, vol.24, pp.999-1010, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01667231

N. Henry, J. Clouet, C. L. Visage, P. Weiss, E. Gautron et al., Silica nanofibers as a new drug delivery system: a study of the protein-silica interactions, J. Mater. Chem. B, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01631453

M. Nagae, T. Ikeda, Y. Mikami, H. Hase, H. Ozawa et al., Intervertebral Disc Regeneration Using Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres, 2007.

K. Sawamura, T. Ikeda, M. Nagae, S. Okamoto, Y. Mikami et al., Characterization of In Vivo Effects of Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres on Degenerated Intervertebral Discs, 2009.

G. Feng, Z. Zha, Y. Huang, J. Li, Y. Wang et al., Sustained and Bioresponsive Two-Stage Delivery of Therapeutic miRNA via Polyplex Micelle-Loaded Injectable Hydrogels for Inhibition of Intervertebral Disc Fibrosis, Adv. Healthc. Mater, pp.1-14, 2018.

J. Schol and D. Sakai, Cell therapy for intervertebral disc herniation and degenerative disc disease: clinical trials, 2018.

M. N. Collins and C. Birkinshaw, Hyaluronic acid based scaffolds for tissue engineering -A review, Carbohydr. Polym, 2013.

I. L. Kim, R. L. Mauck, and J. A. Burdick, Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid, Biomaterials, 2011.

H. Kumar, D. H. Ha, E. J. Lee, J. H. Park, J. H. Shim et al., combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase i study, Stem Cell Res. Ther, 2017.

E. C. Collin, S. Grad, D. I. Zeugolis, C. S. Vinatier, J. R. Clouet et al., An injectable vehicle for nucleus pulposus cell-based therapy, Biomaterials, vol.32, pp.2862-2870, 2011.

Y. C. Chen, W. Y. Su, S. H. Yang, A. Gefen, and F. H. Lin, In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration, Acta Biomater, 2013.

M. Peroglio, D. Eglin, L. M. Benneker, M. Alini, and S. Grad, Thermoreversible hyaluronan-based hydrogel supports in vitro and ex vivo disc-like differentiation of human mesenchymal stem cells, Spine J, vol.13, pp.1627-1639, 2013.

I. L. Moss, L. Gordon, K. A. Woodhouse, C. M. Whyne, and A. J. Yee, A novel thiol-modified hyaluronan and elastin-like polypetide composite material for tissue engineering of the nucleus pulposus of the intervertebral disc, Spine (Phila. Pa, 1976.

K. Chiba, G. B. Andersson, K. Masuda, and E. J. Thonar, Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate, Spine (Phila. Pa, 1976.

A. E. Baer, J. Y. Wang, V. B. Kraus, and L. A. Setton, Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures, J. Orthop. Res, pp.3-6, 2001.

H. Mizuno, A. K. Roy, C. A. Vacanti, K. Kojima, M. Ueda et al., Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement, Spine (Phila. Pa, 1976.

D. Bosnakovski, M. Mizuno, G. Kim, S. Takagi, M. Okumura et al., Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSC chondrogenesis, Biotechnol. Bioeng, 2006.

P. Roughley, C. Hoemann, E. Desrosiers, F. Mwale, J. Antoniou et al., The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation, Biomaterials, 2006.

F. Mwale, M. Iordanova, C. N. Demers, T. Steffen, P. Roughley et al., Biological Evaluation of Chitosan Salts Cross-Linked to Genipin as a Cell Scaffold for Disk Tissue Engineering, Tissue Eng, 2005.

S. M. Richardson, N. Hughes, J. A. Hunt, A. J. Freemont, and J. A. Hoyland, Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels, Biomaterials, 2008.

W. Tong, Z. Lu, L. Qin, R. L. Mauck, H. E. Smith et al., Cell therapy for the degenerating intervertebral disc, Transl. Res, 2017.

Y. Gan, S. Li, P. Li, Y. Xu, L. Wang et al.,

R. M. Gonçalves, J. C. Antunes, and M. A. Barbosa, Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(?-glutamic acid) polyelectrolyte complexes, Eur. Cells Mater, 2012.

H. Zhang, S. Yu, X. Zhao, Z. Mao, and C. Gao, Stromal cell-derived factor-1?-encapsulated albumin/heparin nanoparticles for induced stem cell migration and intervertebral disc regeneration in vivo, Acta Biomater, 2018.

I. Freeman and S. Cohen, The influence of the sequential delivery of angiogenic factors from affinitybinding alginate scaffolds on vascularization, 2009.

M. Wei, Y. Gao, X. Li, and M. J. Serpe, Stimuli-responsive polymers and their applications, Polym. Chem, 2017.

F. Seidi, R. Jenjob, and D. Crespy, Designing Smart Polymer Conjugates for Controlled Release of Payloads, Chem. Rev, 2018.

W. Xu, P. A. Ledin, Z. Iatridi, C. Tsitsilianis, and V. V. Tsukruk, Multicompartmental Microcapsules with Orthogonal Programmable Two-Way Sequencing of Hydrophobic and Hydrophilic Cargo Release, Angew. Chemie -Int, 2016.

S. Mura, J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater, 2013.

S. J. Bryant and F. J. Vernerey, Programmable Hydrogels for Cell Encapsulation and Neo-Tissue Growth to Enable Personalized Tissue Engineering, Adv. Healthc. Mater, 2018.

J. Hoque, N. Sangaj, and S. Varghese, Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine, Macromol. Biosci, 2019.

K. R. Mulligan, C. E. Ferland, R. Gawri, A. Borthakur, L. Haglund et al., Axial T1? MRI as a diagnostic imaging modality to quantify proteoglycan concentration in degenerative disc disease, Eur. Spine J, 2014.

G. Vadalà, F. Russo, S. Battisti, L. Stellato, F. Martina et al., Early intervertebral disc degeneration changes in asymptomatic weightlifters assessed by T1?' -magnetic resonance imaging, Spine (Phila. Pa, 1976.

C. P. Paul, T. H. Smit, M. De-graaf, R. M. Holewijn, A. Bisschop et al., Quantitative MRI in early intervertebral disc degeneration

T. W. Evashwick-rogler, A. Lai, H. Watanabe, J. M. Salandra, B. A. Winkelstein et al., Inhibiting tumor necrosis factor-alpha at time of induced intervertebral disc injury limits long-term pain and degeneration in a rat model, JOR Spine, vol.1, 2018.

S. Ohtori, M. Miyagi, Y. Eguchi, G. Inoue, S. Orita et al., Efficacy of epidural administration of anti-interleukin-6 receptor antibody onto spinal nerve for treatment of sciatica, Eur. Spine J, 2012.

T. Sainoh, S. Orita, M. Miyagi, G. Inoue, K. Yamauchi et al., Single intradiscal injection of the interleukin-6 receptor antibody tocilizumab provides short-term relief of discogenic low back pain; prospective comparative cohort study, J. Orthop. Sci, 2016.

R. K. Studer, A. M. Aboka, L. G. Gilbertson, H. Georgescu, G. Sowa et al., p38 MAPK inhibition in nucleus pulposus cells: A potential target for treating intervertebral disc degeneration, 1976.

J. S. Kim, M. B. Ellman, D. Yan, H. S. An, R. Kc et al., Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc, J. Cell. Physiol, 2013.

W. Fang, X. Zhou, J. Wang, L. Xu, L. Zhou et al., Wogonin mitigates intervertebral disc degeneration through the Nrf2/ARE and MAPK signaling pathways, Int. Immunopharmacol, 2018.

, ClinicalTrials.gov, NCT00813813, 2016.

, ClinicalTrials.gov, NCT01182337, 2016.

, ClinicalTrials.gov, NCT01124006, 2016.

, ClinicalTrials.gov, NCT01158924, 2016.

C. M. Tran, Z. R. Schoepflin, D. Z. Markova, C. K. Kepler, D. G. Anderson et al., CCN2 suppresses catabolic effects of interleukin-1beta through alpha5beta1 and alphaVbeta3 integrins in nucleus pulposus cells: implications in intervertebral disc degeneration, J Biol Chem, vol.289, pp.7374-7387, 2014.

L. Jianwei, J. Tongmeng, H. Mingwei, F. Depeng, S. Chong et al., Andrographolide prevents human nucleus pulposus cells against degeneration by inhibiting the NF-?B pathway, J. Cell. Physiol, 2018.

A. Matta, M. Z. Karim, D. E. Isenman, and W. M. Erwin, Molecular Therapy for Degenerative Disc Disease: Clues from Secretome Analysis of the Notochordal Cell-Rich Nucleus Pulposus, Sci. Rep, 2017.

C. L. Le-maitre, P. Baird, A. J. Freemont, and J. A. Hoyland, An in vitro study investigating the survival and phenotype of mesenchymal stem cells following injection into nucleus pulposus tissue, Arthritis Res. Ther, vol.11, p.20, 2009.

J. Yan, S. Yang, H. Sun, D. Guo, B. Wu et al., Effects of releasing recombinant human growth and differentiation factor-5 from poly(lactic-co-glycolic acid) microspheres for repair of the rat degenerated intervertebral disc, J. Biomater. Appl, 2014.

N. Suffee, C. L. Visage, H. Hlawaty, R. Aid-launais, V. Vanneaux et al., Pro-Angiogenic effect of RANTES-loaded polysaccharide-based microparticles for a mouse ischemia therapy, Sci. Rep, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01844657

S. M. Sinclair, J. Bhattacharyya, J. R. Mcdaniel, D. M. Gooden, R. Gopalaswamy et al., A genetically engineered thermally responsive sustained release curcumin depot to treat neuroinflammation, J. Control. Release, 2013.

Y. H. Cheng, S. H. Yang, and F. H. Lin, Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration, Biomaterials, 2011.

C. Pereira, G. Teixeira, J. R. Ferreira, M. D'este, D. Eglin et al., Stromal Cell Derived Factor-1-Mediated Migration of Mesenchymal Stem Cells Enhances Collagen Type II Expression in Intervertebral Disc, Tissue Eng. Part A, 2018.

, Graphical abstract