C. Doerig, J. C. Rayner, A. Scherf, and A. B. Tobin, Post-translational protein modifications in malaria parasites, Nat Rev Microbiol, vol.13, pp.160-172, 2015.

D. S. Guttery, B. Poulin, A. Ramaprasad, R. J. Wall, D. Ferguson et al., Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation, Cell Host Microbe, vol.16, p.25011111, 2014.

D. Yokoyama, A. Saito-ito, N. Asao, K. Tanabe, M. Yamamoto et al., Modulation of the growth of Plasmodium falciparum in vitro by protein serine/threonine phosphatase inhibitors, Biochem Biophys Res Commun, vol.247, p.9636646, 1998.

M. Ferreira, S. Boens, C. Winkler, K. Szekér, I. Verbinnen et al., The protein phosphatase 1 regulator NIPP1 is essential for mammalian spermatogenesis, Sci Rep, vol.7, p.29042623, 2017.

W. Wang, C. Cronmiller, and D. L. Brautigan, Maternal Phosphatase Inhibitor-2 Is Required for Proper Chromosome Segregation and Mitotic Synchrony During Drosophila Embryogenesis, Genetics, vol.179, p.18689877, 2008.

L. Pedelini, M. Marquina, J. Ariño, A. Casamayor, L. Sanz et al., YPI1 and SDS22 proteins regulate the nuclear localization and function of yeast type 1 phosphatase Glc7, J Biol Chem, vol.282, p.17142459, 2007.

L. A. Fisher, L. Wang, L. Wu, and A. Peng, Phosphatase 1 nuclear targeting subunit is an essential regulator of M-phase entry, maintenance, and exit, J Biol Chem, vol.289, p.25002584, 2014.

E. Heroes, B. Lesage, J. Gö-rnemann, M. Beullens, L. Van-meervelt et al., The PP1 binding code: a molecular-lego strategy that governs specificity, FEBS J, vol.280, p.22360570, 2013.

L. Korrodi-gregó-rio, S. Esteves, and M. Fardilha, Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins, Transl Res, vol.164, p.25090308, 2014.

W. Daher, E. Browaeys, C. Pierrot, H. Jouin, D. Dive et al., Regulation of protein phosphatase type 1 and cell cycle progression by PfLRR1, a novel leucine-rich repeat protein of the human malaria parasite Plasmodium falciparum, Mol Microbiol, vol.60, p.16629662, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00086327

A. Fré-ville, I. Landrieu, M. A. García-gimeno, J. Vicogne, M. Montbarbon et al., Plasmodium falciparum inhibitor-3 homolog increases protein phosphatase type 1 activity and is essential for parasitic survival, J Biol Chem, vol.287, p.22128182, 2012.

A. Fré-ville, K. Cailliau-maggio, C. Pierrot, G. Tellier, H. Kalamou et al., Plasmodium falciparum encodes a conserved active inhibitor-2 for Protein Phosphatase type 1: perspectives for novel anti-plasmodial therapy, BMC Biol, vol.11, p.23837822, 2013.

A. Fré-ville, G. Tellier, A. Vandomme, C. Pierrot, J. Vicogne et al., Identification of a Plasmodium falciparum inhibitor-2 motif involved in the binding and regulation activity of protein phosphatase type 1, FEBS J, vol.281, p.25132288, 2014.

C. Pierrot, X. Zhang, G. Zanghi, A. Fré-ville, A. Rebollo et al., Peptides derived from Plasmodium falciparum leucine-rich repeat 1 bind to serine/threonine phosphatase type 1 and inhibit parasite growth in vitro, Drug Des Devel Ther, vol.12, p.29386885, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01696544

G. Tellier, A. Lenne, K. Cailliau-maggio, A. Cabezas-cruz, J. J. Valdé-s et al., Identification of Plasmodium falciparum Translation Initiation eIF2? Subunit: Direct Interaction with Protein Phosphatase Type 1, Front Microbiol, vol.7, p.27303372, 2016.

L. Florens, M. P. Washburn, J. D. Raine, R. M. Anthony, M. Grainger et al., A proteomic view of the Plasmodium falciparum life cycle, Nature, vol.419, p.12368866, 2002.

T. Hollin, D. Witte, C. Lenne, A. Pierrot, C. Khalife et al., Analysis of the interactome of the Ser/Thr Protein Phosphatase type 1 in Plasmodium falciparum, BMC Genomics, vol.17, p.26988354, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01968039

H. Meiselbach, H. Sticht, and R. Enz, Structural analysis of the protein phosphatase 1 docking motif: molecular description of binding specificities identifies interacting proteins, Chem Biol, vol.13, p.16426971, 2006.

F. Silvestrini, E. Lasonder, A. Olivieri, G. Camarda, B. Van-schaijk et al., Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum, Mol Cell Proteomics, vol.9, p.20332084, 2010.

. Plasmodb, The Plasmodium Genomics Resource, 2019.

T. D. Hurley, J. Yang, L. Zhang, K. D. Goodwin, Q. Zou et al., Structural basis for regulation of protein phosphatase 1 by inhibitor-2, J Biol Chem, vol.282, p.17636256, 2007.

X. Wu and K. Tatchell, Mutations in Yeast Protein Phosphatase Type 1 that Affect Targeting Subunit Binding ?, Biochemistry, vol.40, p.11412094, 2001.

A. Lenne, C. De-witte, G. Tellier, T. Hollin, E. M. Aliouat et al., Characterization of a Protein Phosphatase Type-1 and a Kinase Anchoring Protein in Plasmodium falciparum, Front Microbiol, vol.9, p.30429842, 2018.

G. Manzoni, S. Briquet, V. Risco-castillo, C. Gaultier, S. Topçu et al., A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites. Sci Rep, Nature Publishing Group, vol.4, p.24755823, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01359232

S. C. Oehring, B. J. Woodcroft, S. Moes, J. Wetzel, O. Dietz et al., Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum, Genome Biol, vol.13, p.23181666, 2012.

M. Costanzo, B. Vandersluis, E. N. Koch, A. Baryshnikova, C. Pons et al., A global genetic interaction network maps a wiring diagram of cellular function, Science, vol.353, p.27708008, 2016.

R. Srivas, J. P. Shen, C. C. Yang, S. M. Sun, J. Li et al., A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy, Mol Cell, vol.63, p.27453043, 2016.

M. R. Logan, T. Nguyen, N. Szapiel, J. Knockleby, H. Por et al., Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7, BMC Genomics, vol.9, p.18627629, 2008.

E. P. Walsh, D. J. Lamont, K. A. Beattie, and M. Stark, Novel Interactions of Saccharomyces cerevisiae Type 1 Protein Phosphatase Identified by Single-Step Affinity Purification and Mass Spectrometry ?, Biochemistry, vol.41, p.11841235, 2002.

K. Hirano, M. Ito, and D. J. Hartshorne, Interaction of the ribosomal protein, L5, with protein phosphatase type 1, J Biol Chem. American Society for Biochemistry and Molecular Biology, vol.270, p.7649987, 1995.

J. A. Hutchinson, N. P. Shanware, H. Chang, and R. S. Tibbetts, Regulation of Ribosomal Protein S6 Phosphorylation by Casein Kinase 1 and Protein Phosphatase 1, J Biol Chem, vol.286, p.21233202, 2011.

H. Ceulemans and M. Bollen, Functional Diversity of Protein Phosphatase-1, a Cellular Economizer and Reset Button, Physiol Rev, vol.84, p.14715909, 2004.

M. Fardilha, S. Esteves, L. Korrodi-gregório, A. P. Vintém, S. C. Domingues et al., Identification of the human testis protein phosphatase 1 interactome, Biochem Pharmacol, vol.82, p.21382349, 2011.

B. Laggerbauer, S. Liu, E. Makarov, H. Vornlocher, O. Makarova et al., The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation, RNA, vol.11, p.15840814, 2005.

G. I. Albert, C. Schell, K. M. Kirschner, S. Schä-fer, R. Naumann et al., The GYF domain protein CD2BP2 is critical for embryogenesis and podocyte function, J Mol Cell Biol, vol.7, pp.402-414, 2015.

N. Philip and A. P. Waters, Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector, Cell Host Microbe, vol.18, p.26118994, 2015.

M. Gallego and D. M. Virshup, Protein serine/threonine phosphatases: life, death, and sleeping, Curr Opin Cell Biol, vol.17, p.15780597, 2005.

S. Rebelo, M. Santos, F. Martins, C. Da, E. F. Silva et al., Protein phosphatase 1 is a key player in nuclear events, Cell Signal, vol.27, p.26275498, 2015.

S. M. Khan, B. Franke-fayard, G. R. Mair, E. Lasonder, C. J. Janse et al., Proteome Analysis of Separated Male and Female Gametocytes Reveals Novel Sex-Specific Plasmodium Biology, vol.121, p.15935755, 2005.

J. Miao, Z. Chen, Z. Wang, S. Shrestha, X. Li et al., Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes, Mol Cell Proteomics, vol.16, p.28126901, 2017.

D. Tao, C. Ubaida-mohien, D. K. Mathias, J. G. King, R. Pastrana-mena et al., Sex-partitioning of the Plasmodium falciparum Stage V Gametocyte Proteome Provides Insight into falciparum -specific Cell Biology, Mol Cell Proteomics, vol.13, p.25056935, 2014.

E. Lasonder, S. R. Rijpma, B. Van-schaijk, W. Hoeijmakers, P. R. Kensche et al., Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sexspecific processes and translational repression, Nucleic Acids Res, vol.44, p.27298255, 2016.

A. Olivieri, L. Bertuccini, E. Deligianni, B. Franke-fayard, C. Currà et al., Distinct properties of the egress-related osmiophilic bodies in male and female gametocytes of the rodent malaria parasite P lasmodium berghei, Cell Microbiol, vol.17, p.25262869, 2015.

D. Koning-ward, T. F. Olivieri, A. Bertuccini, L. Hood, A. Silvestrini et al., The role of osmiophilic bodies and Pfg377 expression in female gametocyte emergence and mosquito infectivity in the human malaria parasite Plasmodium falciparum, Mol Microbiol, vol.67, p.18086189, 2007.

A. M. Tomas, G. Margos, G. Dimopoulos, L. H. Van-lin, D. Koning-ward et al., P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions, EMBO J. European Molecular Biology Organization, vol.20, p.11483501, 2001.

I. Sidé-n-kiamos, D. Vlachou, G. Margos, A. Beetsma, A. P. Waters et al., Distinct roles for pbs21 and pbs25 in the in vitro ookinete to oocyst transformation of Plasmodium berghei, J Cell Sci, vol.113, pp.3419-3445, 2000.

C. Lavazec, C. K. Moreira, G. R. Mair, A. P. Waters, C. J. Janse et al., Analysis of mutant Plasmodium berghei parasites lacking expression of multiple PbCCp genes, Mol Biochem Parasitol, vol.163, p.18848846, 2009.

J. D. Raine, A. Ecker, J. Mendoza, R. Tewari, R. R. Stanway et al., Female inheritance of malarial lap genes is essential for mosquito transmission, PLoS Pathog. Public Library of Science, vol.3, p.17335349, 2007.

I. A. Clark and K. A. Rockett, The cytokine theory of human cerebral malaria, Parasitol Today, vol.10, p.15275552, 1994.

J. Dunst, F. Kamena, and K. Matuschewski, Cytokines and Chemokines in Cerebral Malaria Pathogenesis, Front Cell Infect Microbiol, vol.7, p.28775960, 2017.

C. Engwerda, E. Belnoue, and A. C. Grüner, Ré nia L. Experimental models of cerebral malaria, Curr Top Microbiol Immunol, vol.297, p.16265904, 2005.

D. Prakash, C. Fesel, R. Jain, P. Cazenave, G. C. Mishra et al., Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India, J Infect Dis, vol.194, p.16779726, 2006.

S. Briquet, N. Lawson-hogban, B. Boisson, M. P. Soares, R. Péronet et al., Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity, Infect Immun, vol.83, p.25916985, 2015.

R. Spaccapelo, A. E. Caterbi, S. Arcidiacono, P. Capuccini, B. et al., Disruption of plasmepsin-4 and merozoites surface protein-7 genes in Plasmodium berghei induces combined virulenceattenuated phenotype, Sci Rep, vol.1, p.22355558, 2011.

R. Spaccapelo, C. J. Janse, S. Caterbi, B. Franke-fayard, J. A. Bonilla et al., Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria, Am J Pathol, vol.176, p.20019192, 2010.

M. Zhang, C. Wang, T. D. Otto, J. Oberstaller, X. Liao et al., Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis, Science, vol.360, p.29724925, 2018.

E. Bushell, A. R. Gomes, T. Sanderson, B. Anar, G. Girling et al., Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes, Cell, vol.170, p.28708996, 2017.

K. Modrzynska, C. Pfander, L. Chappell, L. Yu, C. Suarez et al., A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle, Cell Host Microbe, vol.21, p.28081440, 2017.

P. Srinivasan, W. L. Beatty, A. Diouf, R. Herrera, X. Ambroggio et al., Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion, Proc Natl Acad Sci U S A, vol.108, p.21788485, 2011.

P. Srinivasan, A. Yasgar, D. K. Luci, W. L. Beatty, X. Hu et al., Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion, Nat Commun, vol.4, p.23907321, 2013.

J. Cao, O. Kaneko, A. Thongkukiatkul, M. Tachibana, H. Otsuki et al., Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites, Parasitol Int, vol.58, p.18952195, 2009.

D. Richard, C. A. Macraild, D. T. Riglar, J. Chan, M. Foley et al., Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites, J Biol Chem, vol.285, p.20228060, 2010.

B. Vulliez-le-normand, M. L. Tonkin, M. H. Lamarque, S. Langer, S. Hoos et al., Structural and functional insights into the malaria parasite moving junction complex, PLoS Pathog, vol.8, p.22737069, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01126609

A. F. Cowman, C. J. Tonkin, W. Tham, and M. T. Duraisingh, The Molecular Basis of Erythrocyte Invasion by Malaria Parasites, Cell Host Microbe, vol.22, p.28799908, 2017.

J. C. Braz, K. Gregory, A. Pathak, W. Zhao, B. Sahin et al., PKC-alpha regulates cardiac contractility and propensity toward heart failure, Nat Med, vol.10, pp.248-54, 2004.

A. El-armouche, A. Bednorz, T. Pamminger, D. Ditz, M. Didié et al., Role of calcineurin and protein phosphatase-2A in the regulation of phosphatase inhibitor-1 in cardiac myocytes, Biochem Biophys Res Commun, vol.346, p.16774736, 2006.

P. Rodriguez, B. Mitton, P. Nicolaou, G. Chen, and E. G. Kranias, Phosphorylation of human inhibitor-1 at Ser67 and/or Thr75 attenuates stimulatory effects of protein kinase A signaling in cardiac myocytes, Am J Physiol Circ Physiol, vol.293, p.17416610, 2007.

C. Zhang, Z. Li, H. Cui, Y. Jiang, Z. Yang et al., Systematic CRISPR-Cas9-Mediated Modifications of Plasmodium yoelii ApiAP2 Genes Reveal Functional Insights into Parasite Development, vol.8, p.29233900, 2017.

K. Sorber, M. T. Dimon, and J. L. Derisi, RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts, Nucleic Acids Res, vol.39, p.21245033, 2011.

C. Freund, V. Dötsch, K. Nishizawa, E. L. Reinherz, and G. Wagner, The GYF domain is a novel structural fold that is involved in lymphoid signaling through proline-rich sequences, Nat Struct Biol, vol.6, pp.656-60, 1999.

D. S. Guttery, B. Poulin, D. Ferguson, B. Szö-?r, B. Wickstead et al., A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion, PLoS Pathog, vol.8, p.23028336, 2012.

C. J. Janse, J. Ramesar, and A. P. Waters, High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei, Nat Protoc, vol.1, p.17406255, 2006.

A. L. Beetsma, T. J. Van-de-wiel, R. W. Sauerwein, and W. M. Eling, Plasmodium berghei ANKA: purification of large numbers of infectious gametocytes, Exp Parasitol, vol.88, p.9501851, 1998.

K. M. Lesage, L. Huot, T. Mouveaux, F. Courjol, J. Saliou et al., Cooperative binding of ApiAP2 transcription factors is crucial for the expression of virulence genes in Toxoplasma gondii, Nucleic Acids Res, vol.46, p.29788176, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02106416

C. Janse, J. Ramesar, and A. Waters, Plasmodium berghei: general parasitological methods, 2004.

J. Lipecka, C. Chhuon, M. Bourderioux, M. Bessard, P. Van-endert et al., Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP), Proteomics, vol.16, p.27219663, 2016.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol, vol.26, p.19029910, 2008.

C. A. Luber, J. Cox, H. Lauterbach, B. Fancke, M. Selbach et al., Quantitative proteomics reveals subset-specific viral recognition in dendritic cells, Immunity, vol.32, p.20171123, 2010.

S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein et al., The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat Methods, vol.13, p.27348712, 2016.

S. Babicki, D. Arndt, A. Marcu, Y. Liang, J. R. Grant et al., Heatmapper: web-enabled heat mapping for all, Nucleic Acids Res, vol.44, p.27190236, 2016.

M. Brochet, M. O. Collins, T. K. Smith, E. Thompson, S. Sebastian et al., Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca 2+ signals at key decision points in the life cycle of malaria parasites, PLoS Biol, vol.12, p.24594931, 2014.

B. M. Invergo, M. Brochet, L. Yu, J. Choudhary, P. Beltrao et al., Sub-minute Phosphoregulation of Cell Cycle Systems during Plasmodium Gamete Formation, Cell Rep, vol.21, p.29141230, 2017.

E. Lasonder, J. L. Green, G. Camarda, H. Talabani, A. A. Holder et al., The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling, J Proteome Res, vol.11, p.23025827, 2012.

L. Solyakov, J. Halbert, M. M. Alam, J. Semblat, D. Dorin-semblat et al., Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum, Nat Commun, vol.2, issue.565, p.22127061, 2011.

M. Treeck, J. L. Sanders, J. E. Elias, and J. C. Boothroyd, The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries, Cell Host Microbe, vol.10, p.22018241, 2011.