B. Poulain and M. R. Popoff, Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic?, Toxins (Basel), issue.1, p.11, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02328868

L. Simpson, The life history of a botulinum toxin molecule, Toxicon, vol.68, pp.40-59, 2013.

A. P. Tighe and G. Schiavo, Botulinum neurotoxins: mechanism of action, Toxicon, vol.67, pp.87-93, 2013.

(. Anonymous and . <airas, , 2001.

R. A. Kammerer and R. M. Benoit, Botulinum neurotoxins: new questions arising from structural biology, Trends Biochem Sci, vol.39, issue.11, pp.517-526, 2014.

S. N. Fewou, J. J. Plomp, and H. J. Willison, The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies, J Anat, vol.224, issue.1, pp.36-44, 2014.

S. Salinas, G. Schiavo, and E. J. Kremer, A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins, Nat Rev Microbiol, vol.8, issue.9, pp.645-655, 2010.

J. Fantini and N. Yahi, Brain Lipids in Synaptic Function and Neurological Disease : Clues to Innovative Therapeutic Strategies for Brain Disorders, 2015.

R. L. Schnaar, Gangliosides of the Vertebrate Nervous System, Journal of Molecular Biology, vol.428, issue.16, pp.3325-3336, 2016.

Q. Chai, Structural basis of cell surface receptor recognition by botulinum neurotoxin B, Nature, vol.444, issue.7122, pp.1096-1100, 2006.

C. Montecucco, O. Rossetto, and G. Schiavo, Presynaptic receptor arrays for clostridial neurotoxins, Trends Microbiol, vol.12, issue.10, pp.442-446, 2004.

S. Sonnino, M. Aureli, L. Mauri, and M. G. Ciampa, Membrane lipid domains in the nervous system, Front Biosci, vol.20, pp.280-302, 2015.

L. H. Chamberlain, R. D. Burgoyne, and G. W. Gould, SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis, Proc Natl Acad Sci U S A, vol.98, issue.10, pp.5619-5624, 2001.

J. Yao, S. E. Kwon, J. D. Gaffaney, F. M. Dunning, and E. R. Chapman, Uncoupling the roles of synaptotagmin I during endo-and exocytosis of synaptic vesicles, Nat Neurosci, vol.15, issue.2, pp.243-249, 2011.

S. E. Kwon and E. R. Chapman, Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles, J Biol Chem, vol.287, issue.42, pp.35658-35668, 2012.

E. R. Chapman, A Ca(2+) Sensor for Exocytosis, Trends Neurosci, vol.41, issue.6, pp.327-330, 2018.

R. Jin, A. Rummel, T. Binz, and A. T. Brunger, Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity, Nature, vol.444, issue.7122, pp.1092-1095, 2006.

L. Peng, Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins, J Cell Sci, vol.125, pp.3233-3242, 2012.

M. Elliott, Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models, Sci Adv, vol.5, issue.1, p.7196, 2019.

R. P. Berntsson, L. Peng, M. Dong, and P. Stenmark, Structure of dual receptor binding to botulinum neurotoxin B, Nat Commun, vol.4, 2013.

C. Montecucco, How do tetanus and botulinum toxins bind to neuronal membranes?, Trends Biochem Sci, vol.11, issue.8, pp.314-317, 1986.

G. Schiavo, Structural biology: dangerous liaisons on neurons, Nature, vol.444, issue.7122, pp.1019-1020, 2006.

D. Stern, A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency, PLoS Pathog, vol.14, issue.5, p.1007048, 2018.

R. Desplantes, Affinity biosensors using recombinant native membrane proteins displayed on exosomes: application to botulinum neurotoxin B receptor, Sci Rep, vol.7, issue.1, p.1032, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01513204

J. Fantini, N. Garmy, and . Yahi, Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells, Biochemistry, vol.45, issue.36, pp.10957-10962, 2006.

J. Fantini and N. Yahi, Molecular basis for the glycosphingolipid-binding specificity of alpha-synuclein: key role of tyrosine 39 in membrane insertion, Journal of Molecular Biology, vol.408, issue.4, pp.654-669, 2011.

I. Levental, M. Grzybek, and K. Simons, Greasing their way: lipid modifications determine protein association with membrane rafts, Biochemistry, vol.49, issue.30, pp.6305-6316, 2010.

L. M. Loura, R. F. De-almeida, A. Coutinho, and M. Prieto, Interaction of peptides with binary phospholipid membranes: application of fluorescence methodologies, Chem Phys Lipids, vol.122, issue.1-2, pp.77-96, 2003.

T. Liu, Ionization potentials of fluoroindoles and the origin of nonexponential tryptophan fluorescence decay in proteins, J Am Chem Soc, vol.127, issue.11, pp.4104-4113, 2005.

L. Tao, Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors, Nat Commun, vol.8, issue.1, p.53, 2017.

F. Fogolari, S. C. Tosatto, L. Muraro, and C. Montecucco, Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes, FEBS Lett, vol.583, issue.14, pp.2321-2325, 2009.

M. Dong, Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells, J Cell Biol, vol.162, issue.7, pp.1293-1303, 2003.

S. Pellett, W. H. Tepp, J. M. Scherf, and E. A. Johnson, Botulinum Neurotoxins Can Enter Cultured Neurons Independent of Synaptic Vesicle Recycling, PLoS One, vol.10, issue.7, p.133737, 2015.

M. Dong, W. H. Tepp, H. Liu, E. A. Johnson, and E. R. Chapman, Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons, J Cell Biol, vol.179, issue.7, pp.1511-1522, 2007.

S. Kozaki, Y. Kamata, S. Watarai, T. Nishiki, and S. Mochida, Ganglioside GT1b as a complementary receptor component for Clostridium botulinum neurotoxins, Microb Pathog, vol.25, issue.2, pp.91-99, 1998.

S. Sun, Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly, Cell Host Microbe, vol.10, issue.3, pp.237-247, 2011.

P. Lazarovici and E. Yavin, Tetanus toxin interaction with human erythrocytes. I. Properties of polysialoganglioside association with the cell surface, Biochim Biophys Acta, vol.812, issue.2, pp.523-531, 1985.

C. Chen, Z. Fu, J. J. Kim, J. T. Barbieri, and M. R. Baldwin, Gangliosides as high affinity receptors for tetanus neurotoxin, J Biol Chem, vol.284, issue.39, pp.26569-26577, 2009.

J. O. Dolly, Localization of sites for 125I-labelled botulinum neurotoxin at murine neuromuscular junction and its binding to rat brain synaptosomes, Toxicon, vol.20, issue.1, pp.141-148, 1982.

R. L. Schnaar, R. Gerardy-schahn, and H. Hildebrandt, Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration, Physiol Rev, vol.94, issue.2, pp.461-518, 2014.

B. A. Joughin, D. F. Green, and B. Tidor, Action-at-a-distance interactions enhance protein binding affinity, Protein Sci, vol.14, issue.5, pp.1363-1369, 2005.

D. M. Lesovoy, Specific membrane binding of neurotoxin II can facilitate its delivery to acetylcholine receptor, Biophys J, vol.97, issue.7, pp.2089-2097, 2009.

T. Nishiki, The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a, FEBS Lett, vol.378, issue.3, pp.253-257, 1996.

C. Gil, A. Soler-jover, J. Blasi, and J. Aguilera, Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes, Biochem Biophys Res Commun, vol.329, issue.1, pp.117-124, 2005.

D. Scala, C. Fantini, and J. , Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins, Methods Mol Biol, vol.1583, pp.7-19, 2017.

J. Lee, CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans, J Chem Theory Comput, vol.15, issue.1, pp.775-786, 2019.

R. M. Venable, CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature, Biophys J, vol.107, issue.1, pp.134-145, 2014.

O. Guvench, Additive empirical force field for hexopyranose monosaccharides, J Comput Chem, vol.29, issue.15, pp.2543-2564, 2008.

, One-way ANOVA followed by Bonferroni's post-hoc test was used for statistical analysis

, K 52 A p= 2.722 x 10 -5 (***); pSYT1 32-57 / pSYT9 p = 8.2 x 10 -8 (***)). (B) Effect of SYT1K 52 A mutation on BoNT/B binding in the absence of, pp.1-32

, BoNT/E (50 nM) binding (dashed curve) to pSYT1 was not distinguishable from the baseline. Data representative of 3 independent experiments. (C) Pull-down assays were carried out with recombinant GST-SYT1 and the K 52 A mutant immobilized on glutathione-Sepharose beads and incubated with 10 nM BoNT/B in presence or absence of GT1b. Analysis of pellets by protein staining confirmed identical amounts of GST-bait proteins. Pellets were analyzed by immunoblotting to reveal BoNT/B (150 kDa) that was partially reduced (heavy chain 100 kDa). The mutation decreased binding by 88 ± 2 % (mean ± SD n=4), GT1b. BoNT/B (30 nM) was injected for 2 min on pSYT peptides, vol.1, pp.41-52

, Proteoliposomes were captured on neutravidin sensorchips and BoNT/B (30 nM) was injected during 2 min. Results are representative of 4 independent experiments

, SYT1 K 52 A mutation induces a 93 ± 10% loss of BoNT/B binding taken at 60 s after the end of injection (n=4 independent experiments

, Mutation of the SYT1 juxtamembrane lysine (K 52 A) inhibits GT1b-dependent

, BoNT/B binding at the surface of PC12 cells. (A) Immunostaining of EGFP (green)

, and BoNT/B (red) in PC12?SYT1 cells expressing full length wild type synaptotagmin