A. Bernard, C. Rivera, P. Bt-pages, P. E. Falcoz, E. Vicaut et al., Risk model of in-hospital mortality after pulmonary resection for cancer: a national database of the French Society of Thoracic and Cardiovascular Surgery (Epithor), J Thorac Cardiovasc Surg, vol.141, p.20692003, 2011.

C. Rivera, P. E. Falcoz, A. Bernard, P. Thomas, and M. Dahan, Surgical management and outcomes of elderly patients with early stage of non-small cell lung cancer: a nested case-control study, Chest, vol.140, p.21436251, 2011.

C. Rivera, A. Bernard, P. E. Falcoz, P. Thomas, A. Schimdt et al., Characterization and prediction of prolonged air leak after pulmonary resection: a nation-wide study setting up the index of prolonged air leak, Ann Thorac Surg, vol.92, p.21871301, 2011.

P. A. Thomas, J. Berbis, P. E. Falcoz, L. Pimpec-barthes, F. Bernard et al., National perioperative outcomes of pulmonary lobectomy for cancer: the influence of nutritional status, Eur J CardioVasc Surg, vol.1, p.24062351, 2013.

P. A. Thomas, P. E. Falcoz, A. Bernard, L. Pimpec-barthes, F. Jougon et al., et al for the EPITHOR group Bilobectomy for lung cancer: contemporary national early morbidity and mortality outcomes, Eur J CardioVasc Surg, vol.2015, pp.1-6

P. B. Pagès, J. P. Delpy, B. Orsini, D. Gossot, J. M. Baste et al., Epithor project (French Society of Thoracic and Cardiovascular Surgery) Propensity Score Analysis Comparing Videothoracoscopic Lobectomy With Thoracotomy: A French Nationwide Study, Ann Thorac Surg, 2009.

P. E. Falcoz, M. Conti, L. Brouchet, S. Chocron, M. Puyraveau et al., The Thoracic Surgery Scoring System (Thoracoscore): Risk model for in-hospital death in 15,183 patients requiring thoracic surgery, J Thorac Cardiovasc Surg, vol.133, p.17258556, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00493643

E. Lim, D. Baldwin, M. Beckles, J. Duffy, J. Entwisle et al., British Thoracic Society and the Society for Cardiothoracic Surgery in Great Britain and Ireland Thorax, vol.65, p.20940263, 2010.

C. V. Walraven and P. Austin, Administrative database research has unique characteristics that can risk biased results, J Clin Epidemiol, vol.65, p.22075111, 2012.

J. Helgeland, D. T. Kristoffersen, K. D. Skyrud, and A. S. Lindman, Variation between hospitals with to diagnostic practice, coding accuracy, and case_mix. A retrospective validation study of administrative data versus medical records for estimating 30-day mortality after hip fracture, Plos ONE, vol.11, p.27203243, 2016.

B. N. Manktelow, T. A. Evans, and E. S. Draper, Differences in case-mix can influence the comparison of standardized mortality ratios even with optimal risk adjustment: an analysis of data from paediatric intensive care, BMJ Qual Saf, vol.23, p.24840239, 2014.

P. C. Austin, J. V. Tu, D. A. Alter, and C. D. Naylor, The impact of under coding of cardiac severity and comorbid diseases on the accuracy of hospital report cards, Med care, vol.43, p.16034294, 2005.

P. B. Pagès, J. Cottenet, A. S. Mariet, and A. Bernard, Quantin C In-hospital mortality following lung cancer resection: nationwide administrative database, Eur Respir J, vol.47, issue.6, p.26965293, 2016.

L. I. Iezzoni, Assessing quality using administrative data, Ann Intern Med, vol.127, pp.666-674, 1997.

, International Statistical Classification of Diseases and Related Health Problems 10thRevision, 2016.

E. W. Steyerberg, Clinical prediction models. A practical approach to development, validation and updating, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00552693

P. D. Faris, W. A. Ghali, and R. Brant, Bias in estimated of confidence intervals for health outcome report cards, Journal of epidemiology, vol.56, pp.553-558, 2003.

D. M. Shahian and S. L. Normand, What is a performance outlier, BMJ quality & safety, vol.24, pp.95-99, 2015.

J. Cohen, A Coefficient of agreement for nominal scales, Educ Psychol Meas, vol.20, pp.37-46, 1960.

C. Fischer, H. F. Lingsma, N. Van-leersum, R. Tollenaar, M. W. Wouters et al., Comparing colon cancer outcomes: the impact of low hospital case volume and case-mix adjustment, EJSO, vol.41, pp.1045-1053, 2015.

K. F. Welke, B. S. Diggs, T. Karamlou, and R. M. Ungerleider, Comparison of pediatric cardiac surgical mortality rates from national administrative data to contemporary clinical standards, Ann Thorac Surg, vol.87, p.19101301, 2009.

H. A. Anema, S. N. Van-der-veer, J. Kievit, E. Krol-warmerdam, C. Fischer et al., Influences of definition ambiguity on hospital performance indicator scores: examples from the Netherlands, European Journal of public Health, vol.24, p.23543677, 2013.

M. Salati, A. Brunelli, M. Dahan, R. G. Van-raemdonck, D. Varela et al., on behalf of the European Society of thoracic surgeons database committee. Task-independent metrics to assess the data quality of medical registries using the European society of thoracic surgeons (ESTS) database, European journal of cardio-thoracic surgery, vol.40, p.21168341, 2011.

E. H. Lawson, R. Louie, D. S. Zingmond, R. H. Brook, B. L. Hall et al., A comparison of clinical registry versus administrative claims data for reporting of 30-day surgical complications, Ann Surg, vol.256, p.23095667, 2012.

D. M. Shahian, T. Silverstein, A. F. Lovett, R. E. Wolf, and S. Normand, Comparison of clinical and administrative data sources for hospital coronary artery bypass graft surgery report cards, Circulation, vol.115, p.17353447, 2007.

C. W. Seder, M. Salati, B. D. Kozower, C. D. Wright, P. E. Falcoz et al., Variation in pulmonary resection practices between the society of thoracic surgeons and the European society of thoracic surgeons general thoracic surgery databases, Ann Thorac Surg, vol.101, p.27021033, 2016.

A. Prasad, M. R. Helder, D. A. Brown, and H. V. Schaff, Understanding differences in administrative and audited patient data in cardiac surgery: comparison of the university healthsystem consortium and society of thoracic surgeons databases, J Am Coll Surg, vol.223, p.27457251, 2016.

K. F. Welke, E. D. Peterson, M. S. Vaughan-sarrazin, O. 'brien, S. M. Rosenthal et al., Comparison of cardiac surgery volumes and mortality rates between the society of thoracic surgeons and medicare databases from, Ann Thorac Surg, vol.84, p.17954059, 1993.

P. Aylin, A. Bottle, and A. Majeed, Use of administrative data or clinical databases as predictors of risk of death in hospital: comparison of models, BMJ, 2007.

D. T. Kristoffersen, J. Helgeland, J. Clench-aas, P. Laake, and M. B. Veiered, Observed to expected or logistic regression to indentify hospitals with high or low 30-day mortality?, PLos ONE, 2018.

, Commission National Informatique et Liberté s (CNIL), p.31

M. J. Magee, C. D. Wright, D. Mcdonald, F. G. Fernandez, and B. D. Kozower, External validation of the society of thoracic surgeons general thoracic surgery database, Ann Thorac Surg, vol.96, p.23998406, 2013.