P. Craveur, A. P. Joseph, J. Esque, T. J. Narwani, F. Noel et al., Front Mol Biosci, vol.2, p.20, 2015.

O. F. Lange, P. Rossi, N. G. Sgourakis, Y. Song, H. W. Lee et al., Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples, Proc Natl Acad Sci U S A, vol.109, pp.10873-10878, 2012.

P. Karplus and G. Schulz, Prediction of chain flexibility in proteins. A tool for the selection of peptide antigens, Naturwissenschaften, vol.72, pp.212-213, 1985.

M. Vihinen, E. Torkkila, and P. Riikonen, Accuracy of protein flexibility predictions, Proteins, vol.19, pp.141-149, 1994.

H. Naderi-manesh, M. Sadeghi, S. Arab, and A. A. Moosavi-movahedi, Prediction of protein surface accessibility with information theory, Proteins, vol.42, pp.452-459, 2001.

I. B. Kuznetsov, Ordered conformational change in the protein backbone: prediction of conformationally variable positions from sequence and low-resolution structural data, Proteins, vol.72, pp.74-87, 2008.

I. B. Kuznetsov and M. Mcduffie, FlexPred: a web-server for predicting residue positions involved in conformational switches in proteins, Bioinformation, vol.3, pp.134-136, 2008.

A. Schlessinger and B. Rost, Protein flexibility and rigidity predicted from sequence, Proteins, pp.115-126, 2005.

A. Schlessinger, G. Yachdav, and B. Rost, PROFbval: predict flexible and rigid residues in proteins, Bioinformatics, vol.22, pp.891-893, 2006.

Z. Yuan, T. L. Bailey, and R. D. Teasdale, Prediction of protein B-factor profiles, Proteins, vol.58, pp.905-912, 2005.

X. Y. Pan and H. B. Shen, Robust prediction of B-factor profile from sequence using twostage SVR based on random forest feature selection, Protein Pept Lett, vol.16, pp.1447-1454, 2009.

K. Chen, L. A. Kurgan, and J. Ruan, Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs, BMC Struct Biol, vol.7, p.25, 2007.

T. Zhang, E. Faraggi, and Y. Zhou, Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction, Proteins, vol.78, pp.3353-3362, 2010.

M. V. Berjanskii and D. S. Wishart, A simple method to predict protein flexibility using secondary chemical shifts, J Am Chem Soc, vol.127, pp.14970-14971, 2005.

M. V. Berjanskii and D. S. Wishart, The RCI server: rapid and accurate calculation of protein flexibility using chemical shifts, Nucleic Acids Res, vol.35, pp.531-537, 2007.

O. Trott, K. Siggers, B. Rost, and A. G. Palmer, Protein conformational flexibility prediction using machine learning, J Magn Reson, vol.3, pp.37-47, 2008.

C. Benros, A. G. De-brevern, C. Etchebest, and S. Hazout, Assessing a novel approach for predicting local 3D protein structures from sequence, Proteins, vol.62, pp.865-880, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00133180

A. Bornot, C. Etchebest, and A. G. De-brevern, A new prediction strategy for long local protein structures using an original description, Proteins, pp.570-587, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00348740

A. G. De-brevern and S. Hazout, Hybrid protein model' for optimally defining 3D protein structure fragments, Bioinformatics, vol.19, pp.345-353, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00133632

A. Bornot, C. Etchebest, and A. G. De-brevern, Predicting protein flexibility through the prediction of local structures, Proteins, vol.79, pp.839-852, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00568171

A. G. De-brevern, A. Bornot, P. Craveur, C. Etchebest, and J. C. Gelly, PredyFlexy: flexibility and local structure prediction from sequence, Nucleic Acids Res, vol.40, pp.317-322, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00750270

B. Kobe, G. Guncar, R. Buchholz, T. Huber, B. Maco et al., Crystallography and protein-protein interactions: biological interfaces and crystal contacts, Biochem Soc Trans, pp.1438-1441, 2008.

J. D. Durrant and J. A. Mccammon, Molecular dynamics simulations and drug discovery, BMC Biol, vol.9, p.71, 2011.

P. Craveur, A. P. Joseph, J. Rebehmed, and A. G. De-brevern, beta-Bulges: extensive structural analyses of beta-sheets irregularities, vol.22, pp.1366-1378, 2013.

E. Cilia, R. Pancsa, P. Tompa, T. Lenaerts, and W. F. Vranken, From protein sequence to dynamics and disorder with DynaMine, Nat Commun, vol.4, p.2741, 2013.

E. Cilia, R. Pancsa, P. Tompa, T. Lenaerts, and W. F. Vranken, The DynaMine webserver: predicting protein dynamics from sequence, Nucleic Acids Res, vol.42, pp.264-270, 2014.

A. G. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins, pp.271-287, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00132821

A. P. Joseph, G. Agarwal, S. Mahajan, J. C. Gelly, L. S. Swapna et al., A short survey on protein blocks, Biophys Rev, vol.2, pp.137-147, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00512823

Y. Zhang, B. Stec, and A. Godzik, Between order and disorder in protein structures: analysis of "dual personality" fragments in proteins, Structure, vol.15, pp.1141-1147, 2007.

T. J. Narwani, P. Craveur, N. K. Shinada, H. Santuz, J. Rebehmed et al., Dynamics and deformability of ?-, 310-and ?-helices, Archives of Biological Sciences, vol.70, pp.21-31, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01581259

, NA, vol.12, pp.27-34, 2007.

. Zhou,

, Flexibility prediction method summary. Are provided by chronological order the different methodologies with references, url, year of publications and the url for download of the methods