W. M. Kuehl and P. L. Bergsagel, Multiple myeloma: Evolving genetic events and host interactions, Nat. Rev. Cancer, vol.2, pp.175-187, 2002.

R. L. Siegel, K. D. Miller, and A. , Cancer statistics, CA Cancer J. Clin, vol.65, pp.5-29, 2015.

P. Walter and D. Ron, The unfolded protein response: From stress pathway to homeostatic regulation, Science, vol.334, pp.1081-1086, 2011.

C. Hetz, The unfolded protein response: Controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol, vol.13, pp.89-102, 2012.

M. Wang and R. J. Kaufman, Protein misfolding in the endoplasmic reticulum as a conduit to human disease, Nature, vol.529, pp.326-335, 2016.

J. R. Cubillos-ruiz, S. E. Bettigole, and L. H. Glimcher, Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer, Cell, vol.168, pp.692-706, 2017.

I. Tabas and D. Ron, Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress, Nat. Cell Biol, vol.13, pp.184-190, 2011.

J. S. Cox, C. E. Shamu, and P. Walter, Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase, Cell, vol.73, pp.1197-1206, 1993.

K. P. Lee, Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing, Cell, vol.132, pp.89-100, 2008.

W. Tirasophon, A. A. Welihinda, and R. J. Kaufman, A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/ endoribonuclease (Ire1p) in mammalian cells, Genes Dev, vol.12, pp.1812-1824, 1998.

A. V. Korennykh, The unfolded protein response signals through high-order assembly of Ire1, Nature, vol.457, pp.687-693, 2009.

D. Han, IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates, Cell, vol.138, pp.562-575, 2009.

Y. Lu, F. X. Liang, and X. Wang, A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB, Mol. Cell, vol.55, pp.758-770, 2014.

K. J. Travers, Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation, Cell, vol.101, pp.249-258, 2000.

A. L. Shaffer, XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation, Immunity, vol.21, pp.81-93, 2004.

D. Acosta-alvear, XBP1 controls diverse cell type-and condition-specific transcriptional regulatory networks, Mol. Cell, vol.27, pp.53-66, 2007.

J. L. Brodsky, Cleaning up: ER-associated degradation to the rescue, Cell, vol.151, pp.1163-1167, 2012.

J. Hollien and J. S. Weissman, Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response, Science, vol.313, pp.104-107, 2006.

J. Hollien, Regulated Ire1-dependent decay of messenger RNAs in mammalian cells, J. Cell Biol, vol.186, pp.323-331, 2009.

M. Lu, Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis, Science, vol.345, pp.98-101, 2014.

T. K. Chang, Coordination between two branches of the unfolded protein response determines apoptotic cell fate, Mol. Cell, vol.71, pp.629-636, 2018.

A. M. Reimold, Plasma cell differentiation requires the transcription factor XBP-1, Nature, vol.412, pp.300-307, 2001.

N. N. Iwakoshi, Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1, Nat. Immunol, vol.4, pp.321-329, 2003.

K. Zhang, The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis, J. Clin. Invest, vol.115, pp.268-281, 2005.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol.144, pp.646-674, 2011.

L. Vincenz, R. Jäger, M. O'dwyer, and A. Samali, Endoplasmic reticulum stress and the unfolded protein response: Targeting the achilles heel of multiple myeloma, Mol. Cancer Ther, vol.12, pp.831-843, 2013.

M. Wang and R. J. Kaufman, The impact of the endoplasmic reticulum protein-folding environment on cancer development, Nat. Rev. Cancer, vol.14, pp.581-597, 2014.

D. Jiang, M. Niwa, and A. C. Koong, Targeting the IRE1?-XBP1 branch of the unfolded protein response in human diseases, Semin. Cancer Biol, vol.33, pp.48-56, 2015.

D. R. Carrasco, The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis, Cancer Cell, vol.11, pp.349-360, 2007.

T. Bagratuni, XBP1s levels are implicated in the biology and outcome of myeloma mediating different clinical outcomes to thalidomide-based treatments, Blood, vol.116, pp.250-253, 2010.

I. Papandreou, Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma, Blood, vol.117, pp.1311-1314, 2011.

N. Mimura, Blockade of XBP1 splicing by inhibition of IRE1? is a promising therapeutic option in multiple myeloma, Blood, vol.119, pp.5772-5781, 2012.

S. K. Kumar, Multiple myeloma, Nat. Rev. Dis. Primers, vol.3, p.17046, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01813384

S. C. Ling, Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1, Haematologica, vol.97, pp.64-72, 2012.

P. E. Harrington, Unfolded protein response in cancer: IRE1? inhibition by selective kinase ligands does not impair tumor cell viability, ACS Med. Chem. Lett, vol.6, pp.68-72, 2014.

S. M. Chan, M. P. Lowe, A. Bernard, A. A. Miller, and T. P. Herbert, The inositol-requiring enzyme 1 (IRE1?) RNAse inhibitor, 4?8C, is also a potent cellular antioxidant, Biochem. J, vol.475, pp.923-929, 2018.

L. Niederreiter, ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells, J. Exp. Med, vol.210, pp.2041-2056, 2013.

F. Urano, Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1, Science, vol.287, pp.664-666, 2000.

L. Lombardi, Molecular characterization of human multiple myeloma cell lines by integrative genomics: Insights into the biology of the disease, Genes Chromosomes Cancer, vol.46, pp.226-238, 2007.

R. Ria, A VEGF-dependent autocrine loop mediates proliferation and capillarogenesis in bone marrow endothelial cells of patients with multiple myeloma, Thromb. Haemost, vol.92, pp.1438-1445, 2004.

X. Chen, XBP1 promotes triple-negative breast cancer by controlling the HIF1? pathway, Nature, vol.508, pp.103-107, 2014.

R. Ghosh, Allosteric inhibition of the IRE1? RNase preserves cell viability and function during endoplasmic reticulum stress, Cell, vol.158, pp.534-548, 2014.

B. C. Cross, The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.869-878, 2012.

H. Rozemuller, A bioluminescence imaging based in vivo model for preclinical testing of novel cellular immunotherapy strategies to improve the graft-versusmyeloma effect, Haematologica, vol.93, pp.1049-1057, 2008.

T. Iwawaki, R. Akai, S. Yamanaka, and K. Kohno, Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.16657-16662, 2009.

T. Iwawaki, R. Akai, and K. Kohno, IRE1? disruption causes histological abnormality of exocrine tissues, increase of blood glucose level, and decrease of serum immunoglobulin level, PLoS One, vol.5, p.13052, 2010.

M. Shao, Hepatic IRE1? regulates fasting-induced metabolic adaptive programs through the XBP1s-PPAR? axis signalling, Nat. Commun, vol.5, p.3528, 2014.

R. A. Zuellig, Improved physiological properties of gravity-enforced reassembled rat and human pancreatic pseudo-islets, J. Tissue Eng. Regen. Med, vol.11, pp.109-120, 2017.

C. Leung-hagesteijn, Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma, Cancer Cell, vol.24, pp.289-304, 2013.

G. Lu, The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins, Science, vol.343, pp.305-309, 2014.

S. Surget, Cell death via DR5, but not DR4, is regulated by p53 in myeloma cells, Cancer Res, vol.72, pp.4562-4573, 2012.