M. W. Dewhirst and T. W. Secomb, Transport of drugs from blood vessels to tumour tissue, Nat. Rev. Canc, vol.17, pp.738-750, 2017.

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher et al., Normalization of the vasculature for treatment of cancer and other diseases, Physiol. Rev, vol.91, pp.1071-1121, 2011.

J. A. Nagy, S. H. Chang, S. C. Shih, A. M. Dvorak, and H. F. Dvorak, Heterogeneity of the tumor vasculature, Semin. Thromb. Hemost, vol.36, pp.321-331, 2010.

J. D. Martin, D. Fukumura, D. G. Duda, Y. Boucher, and R. K. Jain, Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity, Cold Spring Harbor Perspect, 2016.

R. G. Bristow and R. P. Hill, Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability, Nat. Rev. Canc, vol.8, pp.180-192, 2008.

R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, vol.307, pp.58-62, 2005.

R. N. Gacche, Compensatory angiogenesis and tumor refractoriness, vol.4, p.153, 2015.

R. K. Jain, D. G. Duda, J. W. Clark, and J. S. Loeffler, Lessons from phase III clinical trials on anti-VEGF therapy for cancer, Nature clinical practice, Oncology, vol.3, pp.24-40, 2006.

V. G. Cooke, V. S. Lebleu, D. Keskin, Z. Khan, J. T. O'connell et al., Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway, Cancer Cell, vol.21, pp.66-81, 2012.

J. M. Ebos, C. R. Lee, W. Cruz-munoz, G. A. Bjarnason, J. G. Christensen et al., Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis, Cancer Cell, vol.15, pp.232-239, 2009.

D. Keskin, J. Kim, V. G. Cooke, C. C. Wu, H. Sugimoto et al., Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2, Cell Rep, vol.10, pp.1066-1081, 2015.

M. Paez-ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama et al., Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis, Cancer Cell, vol.15, pp.220-231, 2009.

A. M. Al-abd, A. J. Alamoudi, A. B. Abdel-naim, T. A. Neamatallah, and O. M. Ashour, Anti-angiogenic agents for the treatment of solid tumors: potential pathways, therapy and current strategies -a review, J. Adv. Res, vol.8, pp.591-605, 2017.

D. Huang, H. Lan, F. Liu, S. Wang, X. Chen et al., Anti-angiogenesis or proangiogenesis for cancer treatment: focus on drug distribution, Int. J. Clin. Exp. Med, vol.8, pp.8369-8376, 2015.

J. M. Borras, Y. Lievens, P. Dunscombe, M. Coffey, J. Malicki et al., The optimal utilization proportion of external beam radiotherapy in European countries: an ESTRO-HERO analysis, Radiotherapy and oncology, J. Eur. Soc. Ther. Radiol. Oncol, vol.116, pp.38-44, 2015.

M. Garcia-barros, F. Paris, C. Cordon-cardo, D. Lyden, S. Rafii et al., Tumor response to radiotherapy regulated by endothelial cell apoptosis, vol.300, pp.1155-1159, 2003.

V. A. Potiron, R. Abderrahmani, K. Clement-colmou, S. Marionneau-lambot, T. Oullier et al., Improved functionality of the vasculature during conventionally fractionated radiation therapy of prostate cancer, PLoS One, vol.8, p.84076, 2013.

D. B. Pink, W. Schulte, M. H. Parseghian, A. Zijlstra, and J. D. Lewis, Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery, PLoS One, vol.7, p.33760, 2012.

K. J. Patel, O. Tredan, and I. F. Tannock, Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues, Cancer Chemother. Pharmacol, vol.72, pp.127-138, 2013.

S. J. Kim, K. H. Jung, M. K. Son, J. H. Park, H. H. Yan et al., Tumor vessel normalization by the PI3K inhibitor HS-173 enhances drug delivery, Cancer Lett, vol.403, pp.339-353, 2017.

N. Qayum, J. Im, M. R. Stratford, E. J. Bernhard, W. G. Mckenna et al., Modulation of the tumor microvasculature by phosphoinositide-3 kinase inhibition increases doxorubicin delivery in vivo, Clin. Cancer Res. : Off. J. Am. Assoc. Cancer Res, vol.18, pp.161-169, 2012.

C. M. Ma, C. W. Coffey, L. A. Dewerd, C. Liu, R. Nath et al., American Association of Physicists, AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology, Med. Phys, vol.28, pp.868-893, 2001.

C. Noblet, S. Chiavassa, F. Paris, S. Supiot, A. Lisbona et al., PM : an international journal devoted to the applications of physics to medicine and biology, Off. J. Ital. Assoc. Biomed. Phys, vol.30, pp.63-68, 2014.

J. V. Gaustad, T. G. Simonsen, M. N. Leinaas, and E. K. Rofstad, Sunitinib treatment does not improve blood supply but induces hypoxia in human melanoma xenografts, BMC Canc, vol.12, p.388, 2012.

D. B. Mendel, A. D. Laird, X. Xin, S. G. Louie, J. G. Christensen et al., In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and plateletderived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship, Clin. Cancer Res. : Off. J. Am. Assoc. Cancer Res, vol.9, pp.327-337, 2003.

C. Brooks, T. Sheu, K. Bridges, K. Mason, D. Kuban et al., Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer, Radiat. Oncol, vol.7, p.154, 2012.

J. K. Saggar, A. S. Fung, K. J. Patel, and I. F. Tannock, Use of molecular biomarkers to quantify the spatial distribution of effects of anticancer drugs in solid tumors, Mol. Cancer Ther, vol.12, pp.542-552, 2013.

L. Davies-cde, L. M. Lundstrom, J. Frengen, L. Eikenes, S. O. Bruland et al., Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts, Cancer Res, vol.64, pp.547-553, 2004.

H. Kalofonos, G. Rowlinson, and A. A. Epenetos, Enhancement of monoclonal antibody uptake in human colon tumor xenografts following irradiation, Cancer Res, vol.50, pp.159-163, 1990.

T. Barrett, M. Brechbiel, M. Bernardo, and P. L. Choyke, MRI of tumor angiogenesis, J. Magn. Reson. Imaging : JMRI, vol.26, pp.235-249, 2007.

S. Supiot, C. Rousseau, M. Dore, C. Cheze-le-rest, C. Kandel-aznar et al., Evaluation of tumor hypoxia prior to radiotherapy in intermediate-risk prostate cancer using (18)F-fluoromisonidazole PET/CT: a pilot study, Oncotarget, vol.9, pp.10005-10015, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01823478

P. L. Debbage, S. Seidl, A. Kreczy, P. Hutzler, M. Pavelka et al., Vascular permeability and hyperpermeability in a murine adenocarcinoma after fractionated radiotherapy: an ultrastructural tracer study, Histochem. Cell Biol, vol.114, pp.259-275, 2000.

A. Maeda, Y. Chen, J. Bu, H. Mujcic, B. G. Wouters et al., Vivo imaging reveals significant tumor vascular dysfunction and increased tumor hypoxia-inducible factor-1alpha expression induced by high single-dose irradiation in a pancreatic tumor model, Int. J. Radiat. Oncol. Biol. Phys, vol.97, pp.184-194, 2017.

F. H. Chen, C. S. Chiang, C. C. Wang, C. S. Tsai, S. M. Jung et al., Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors, Clin. Cancer Res. : Off. J. Am. Assoc. Cancer Res, vol.15, pp.1721-1729, 2009.

J. Lan, X. L. Wan, L. Deng, J. X. Xue, L. S. Wang et al., Ablative hypofractionated radiotherapy normalizes tumor vasculature in lewis lung carcinoma mice model, Radiat. Res, vol.179, pp.458-464, 2013.

V. P. Chauhan, J. D. Martin, H. Liu, D. A. Lacorre, S. R. Jain et al., Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels, Nat. Commun, vol.4, p.2516, 2013.

S. J. Lunt, A. Fyles, R. P. Hill, and M. Milosevic, Interstitial fluid pressure in tumors: therapeutic barrier and biomarker of angiogenesis, Future Oncol, vol.4, pp.793-802, 2008.

F. H. Chen, S. Y. Fu, Y. C. Yang, C. C. Wang, C. S. Chiang et al., Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/ CXCR4 pathway, Int. J. Radiat. Oncol. Biol. Phys, vol.86, pp.777-784, 2013.

F. Winkler, S. V. Kozin, R. T. Tong, S. S. Chae, M. F. Booth et al., Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases, Cancer Cell, vol.6, pp.553-563, 2004.

P. H. Dias-moura-prazeres, I. F. Sena, I. D. Borges, P. O. De-azevedo, J. P. Andreotti et al., Dev. Biol, vol.427, pp.6-11, 2017.

A. Holm, T. Heumann, and H. G. Augustin, Microvascular mural cell organotypic heterogeneity and functional plasticity, Trends Cell Biol, vol.28, issue.4, pp.302-316, 2018.

A. A. Berthiaume, R. I. Grant, K. P. Mcdowell, R. G. Underly, D. A. Hartmann et al., Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain, Cell Rep, vol.22, pp.8-16, 2018.

R. A. Hill, L. Tong, P. Yuan, S. Murikinati, S. Gupta et al., Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes, Neuron, vol.87, pp.95-110, 2015.

R. Hamdan, Z. Zhou, and E. S. Kleinerman, Blocking SDF-1alpha/CXCR4 downregulates PDGF-B and inhibits bone marrow-derived pericyte differentiation and tumor vascular expansion in Ewing tumors, Mol. Cancer Ther, vol.13, pp.483-491, 2014.

V. Potiron, Cancer Letters, vol.457, pp.1-9, 2019.