M. Espinosa-urgel, R. Kolter, and J. Ramos, Root colonization by Pseudomonas putida: love at first sight, Microbiology, vol.148, p.11832496, 2002.

M. I. Ramos-gonzalez, M. A. Ramos-diaz, and J. L. Ramos, Chromosomal gene capture mediated by the Pseudomonas putida TOL catabolic plasmid, J Bacteriol, vol.176, p.8045894, 1994.

K. N. Timmis, Pseudomonas putida: a cosmopolitan opportunist par excellence, Environ Microbiol, vol.4, p.12534460, 2002.

M. A. Matilla, J. L. Ramos, P. Bakker, R. Doornbos, D. V. Badri et al., Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation, Environ Microbiol Rep, vol.2, p.23766110, 2009.

D. Molina-romero, Y. E. Morales-garcía, A. Herná-ndez-tenorio, M. Castañeda-lucio, A. R. Netzahuatlmuñoz et al., Pseudomonas putida estimula el crecimiento de maíz en función de la temperatura, Rev Iberoam Ciencias, vol.4, pp.80-88, 2017.

D. Molina-romero, A. Baez, V. Quintero-hernández, M. Castañeda-lucio, L. E. Fuentes-ramírez et al., Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth, vol.12, p.29117218, 2017.

V. Martins-dos-santos, S. Heim, E. Moore, M. Strä-tz, and K. N. Timmis, Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440, Environ Microbiol, vol.6, p.15560824, 2004.

L. P. Wackett, Pseudomonas putida-a versatile biocatalyst, Nat Biotechnol. Nature Publishing Group, vol.21, p.12560839, 2003.

E. Pineda-molina, J. A. Reyes-darias, J. Lacal, J. L. Ramos, J. M. García-ruiz et al., Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites, Proc Natl Acad Sci U S A, vol.109, p.23112148, 2012.

T. Krell, J. Lacal, J. A. Reyes-darias, C. Jimenez-sanchez, R. Sungthong et al., Bioavailability of pollutants and chemotaxis, Curr Opin Biotechnol, vol.24, p.22981870, 2013.

X. Wu, S. Monchy, S. Taghavi, W. Zhu, J. Ramos et al., Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida, FEMS Microbiol Rev, vol.35, p.20796030, 2011.

J. Muñoz-rojas, P. Bernal, E. Duque, P. Godoy, A. Segura et al., Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying, Appl Environ Microbiol, vol.72, p.16391080, 2006.

M. Manzanera, A. G. Castro, . De, A. Tøndervik, A. R. Strøm et al., Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440, Appl Environ Microbiol, vol.68, p.12200283, 2002.

D. B. Roszak and R. R. Colwell, Survival strategies of bacteria in the natural environment, Microbiol Rev, vol.51, pp.365-379, 1987.

K. Chookietwattana and K. Maneewan, Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ. Faisalabad: Soil Science Society of Pakistan, vol.31, pp.30-36, 2012.

H. He, Y. Chen, X. Li, Y. Cheng, C. Yang et al., Influence of salinity on microorganisms in activated sludge processes: A review, Int Biodeterior Biodegradation, vol.119, pp.520-527, 2017.

S. Vilchez and M. Manzanera, Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought, Appl Microbiol Biotechnol, vol.91, p.21769483, 2011.

M. Potts, Desiccation tolerance of prokaryotes, Viable but nonculturable state in P. putida KT2440 as a survival strategy PLOS ONE, vol.58, pp.755-805, 1994.

M. Potts, S. M. Slaughter, F. Hunneke, J. F. Garst, and R. F. Helm, Desiccation tolerance of Prokaryotes: application of principles to human cells, Integr Comp Biol, vol.45, p.21676831, 2005.

L. A. Pazos-rojas, O. Rodríguez-andrade, L. C. Muñoz-arenas, Y. E. Morales-garcía, A. Corral-lugo et al., Desiccation-tolerant rhizobacteria maintain their plant growth-promoting capability after experiencing extreme water stress, SciFed J Appl Microbiol, vol.2, pp.1-13, 2018.

J. G. Streeter, Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation, J Appl Microbiol, vol.95, p.12911696, 2003.

R. L. Barnard, C. A. Osborne, and M. K. Firestone, Responses of soil bacterial and fungal communities to extreme desiccation and rewetting, ISME J. International Society for Microbial Ecology, vol.7, pp.2229-2241, 2013.

J. D. Oliver, Recent findings on the viable but nonculturable state in pathogenic bacteria, FEMS Microbiol Rev, vol.34, pp.415-425, 2010.

M. Orruño, V. R. Kaberdin, and I. Arana, Survival strategies of Escherichia coli and Vibrio spp.: contribution of the viable but nonculturable phenotype to their stress-resistance and persistence in adverse environments, World J Microbiol Biotechnol, vol.33, p.28161849, 2017.

J. R. Stokell and T. R. Steck, Viable but nonculturable bacteria, pp.1-8, 2012.

J. Vriezen and F. J. De-bruijn, Nü sslein KR. Desiccation induces viable but non-culturable cells in Sinorhizobium meliloti 1021, AMB Express, vol.2, pp.1-9, 2012.

J. D. Oliver, The public health significance of viable but nonculturable bacteria, Nonculturable Microorganisms in the Environment, pp.277-300, 2000.

E. Dopp, J. Richard, Z. Dwidjosiswojo, A. Simon, and J. Wingender, Influence of the copper-induced viable but non-culturable state on the toxicity of Pseudomonas aeruginosa towards human bronchial epithelial cells in vitro, Int J Hyg Environ Health, vol.220, p.28941772, 2017.

J. D. Oliver, The viable but nonculturable state in bacteria, J Microbiol. Department of Biology, vol.43, p.15765062, 2005.

J. T. Trevors, Viable but non-culturable (VBNC) bacteria: Gene expression in planktonic and biofilm cells, J Microbiol Methods. Elsevier B.V, vol.86, p.21616099, 2011.

C. Robben, S. Fister, A. K. Witte, D. Schoder, P. Rossmanith et al., Induction of the viable but non-culturable state in bacterial pathogens by household cleaners and inorganic salts, Sci Rep. Springer US, vol.8, p.30310128, 2018.

X. Zhao, J. Zhong, C. Wei, C. W. Lin, and T. Ding, Current perspectives on viable but non-culturable state in foodborne pathogens, Front Microbiol, vol.8, pp.1-16, 2017.

D. Molina-romero, A. Baez, V. Quintero-hernández, M. Castañeda-lucio, L. E. Fuentes-ramírez et al., Selection assay to identify desiccation tolerant bacteria [Internet]. Protocols. io PLOS one, pp.1-2, 2017.

A. Corral-lugo, Y. E. Morales-garcía, L. A. Pazos-rojas, A. Ramírez-valverde, R. D. Martínez-contreras et al., Cuantificació n de bacterias cultivables mediante el mé todo de "goteo en placa por sellado (o estampado) masivo, Rev Colomb Biotecnol, vol.14, pp.147-156, 2012.

J. A. Reyes-darias, V. García, R. Nez, M. Corral-lugo, A. Lesouhaitier et al., Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle, Mol Microbiol, vol.97, p.25921834, 2015.

O. Rodríguez-andrade, L. E. Fuentes-ramírez, Y. E. Morales-garcía, D. Molina-romero, M. R. Bustillos-cristales et al., The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments, Rev Argentina Microbiol, vol.47, p.26652262, 2015.

Y. E. Morales-garcía, J. Rez-hernández, D. , A. Ndez, C. Mascarua-esparza et al., Growth response of maize plantlets inoculated with Enterobacter spp., as a model for alternative agriculture, Rev Argent Microbiol, vol.43, p.22274827, 2011.

J. Muñoz-rojas and J. Caballero-mellado, Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth, Microb Ecol, vol.46, pp.454-464, 2003.

F. Yousef-coronado, M. L. Travieso, M. Espinosa-urgel, and . Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida, FEMS Microbiol Lett, vol.288, p.18783437, 2008.

A. Baez, N. Flores, F. Bolívar, and O. T. Ramírez, Metabolic and transcriptional response of recombinant Escherichia coli to elevated dissolved carbon dioxide concentrations, Biotechnol Bioeng, vol.104, p.19452501, 2009.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2???CT method, Methods, vol.25, p.11846609, 2001.

M. A. Matilla and T. Krell, Plant growth promotion and biocontrol mediated by plant-associated bacteria, Plant Microbiome: Stress Response, pp.45-80, 2018.

L. Mwita, W. Y. Chan, T. Pretorius, S. L. Lyantagaye, S. V. Lapa et al., Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates, Gene. Elsevier B.V, vol.590, p.27259668, 2016.

L. Da-silva-lima, F. L. Olivares, R. Rodrigues-de-oliveira, M. Vega, N. O. Aguiar et al., Root exudate profiling of maize seedlings inoculated with Herbaspirillum seropedicae and humic acids, Chem Biol Technol Agric, vol.1, pp.1-18, 2014.

T. S. Walker, H. P. Bais, E. Grotewold, and J. M. Vivanco, Root exudation and rhizosphere biology, Plant Physiol, vol.132, p.12746510, 2003.

M. Lowder, A. Unge, N. Maraha, J. K. Jansson, J. Swiggett et al., Effect of starvation and the viablebut-nonculturable state on green fluorescent protein (GFP) fluorescence in GFP-tagged Pseudomonas fluorescens A506, Appl Environ Microbiol, vol.66, p.10919764, 2000.

Y. Liu, C. Wang, C. Fung, and X. F. Li, Quantification of viable but nonculturable Escherichia coli O157:H7 by targeting the rpoS mRNA, Anal Chem, vol.82, p.20230052, 2010.

C. M. Scherber, J. L. Schottel, and A. Aksan, Membrane phase behavior of Escherichia coli during desiccation, rehydration, and growth recovery, Biochim Biophys Acta-Biomembr, vol.1788, pp.2427-2435, 2009.

J. Vriezen and F. J. De-bruijn, Appearance of membrane compromised, viable but not culturable and culturable rhizobial cells as a consequence of desiccation. Biological Nitrogen Fixation, pp.977-989, 2015.

I. A. Ivanova, S. Kambarev, R. A. Popova, E. G. Naumovska, K. B. Markoska et al., Determination of Pseudomonas putida live cells with classic cultivation and staining with "Live/Dead Baclight Bacterial Viability Kit, Biotechnol Biotechnol Equip. Taylor & Francis, vol.24, pp.567-570, 2010.

R. Tombolini, A. Unge, M. E. Davey, F. J. De-bruijn, and J. K. Jansson, Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria, FEMS Microbiol Ecol, vol.22, pp.17-28, 1997.

T. Conway and G. K. Schoolnik, Microarray expression profiling: Capturing a genome-wide portrait of the transcriptome, Mol Microbiol, vol.47, p.12581346, 2003.

A. Buck and J. D. Oliver, Survival of spinach-associated Helicobacter pylori in the viable but nonculturable state, Food Control. Elsevier Ltd, vol.21, pp.1150-1154, 2010.

S. Yaron and K. R. Matthews, A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: Investigation of specific target genes, J Appl Microbiol, vol.92, p.11966903, 2002.

S. J. Lahtinen, H. Ahokoski, J. P. Reinikainen, M. Gueimonde, J. Nurmi et al., Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria, Lett Appl Microbiol, vol.46, p.18444975, 2008.

R. Dixon, The xylABC promoter from the Pseudomonas putida TOL plamid is activated by nitrogen regulatory genes in Escherichia coli, MGG Mol Gen Genet, vol.203, p.3520241, 1986.

J. L. Ramos, N. Mermod, and K. N. Timmis, Regulatory circuits controlling transcription of TOL plasmid operon encoding meta-cleavage pathway for degradation of alkylbenzoates by Pseudomonas, Mol Microbiol

, Ltd (10.1111), vol.1, p.3448461, 1987.

J. Hirschman, J. Keener, and S. Kustu, products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria, Proc Natl Acad Sci, vol.82, p.2999766, 1985.

S. Follonier, I. F. Escapa, P. M. Fonseca, B. Henes, S. Panke et al., New insights on the reorganization of gene transcription in Pseudomonas putida KT2440 at elevated pressure. Microb Cell Fact, vol.12, pp.1-18, 2013.

D. J. Brierley and S. A. Martin, Oxidative stress and the DNA mismatch repair pathway, Antioxid Redox Signal, vol.18, p.23121537, 2013.