S. Bell and P. A. Henschke, Implications of nitrogen nutrition for grapes, fermentation and wine, Aust J Grape Wine Res, vol.11, pp.242-295, 2005.

I. S. Pretorius, Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking, Yeast, vol.16, p.10861899, 2000.

M. Bely, J. Sablayrolles, and P. Barre, Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions, J Ferment Bioeng, vol.70, pp.90057-90061, 1990.

D. Torrea, C. Varela, M. Ugliano, C. Ancin-azpilicueta, L. Francis et al., Comparison of inorganic and organic nitrogen supplementation of grape juice-Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast, Food Chem, vol.127, p.25214098, 2011.

M. J. Brauer, C. Huttenhower, E. M. Airoldi, R. Rosenstein, J. C. Matese et al., Coordination of Growth Rate, Stress Response, and Metabolic Activity in Yeast, vol.19, p.17959824, 2008.

M. M. Klosinska, C. A. Crutchfield, P. H. Bradley, J. D. Rabinowitz, and J. R. Broach, Yeast cells can access distinct quiescent states, Genes Dev, vol.25, p.21289062, 2011.

J. R. Broach, Nutritional Control of Growth and Development in Yeast, Genetics, vol.192, p.22964838, 2012.

P. O. Ljungdahl and B. Daignan-fornier, Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae, Genetics, vol.190, p.22419079, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00703026

B. Magasanik and C. A. Kaiser, Nitrogen regulation in Saccharomyces cerevisiae, Gene, vol.290, p.12062797, 2002.

M. Conrad, J. Schothorst, H. N. Kankipati, G. Van-zeebroeck, M. Rubio-texeira et al., Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae, FEMS Microbiol Rev, vol.38, p.24483210, 2014.

W. Zhang, G. Du, J. Zhou, and J. Chen, Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae, Microbiol Mol Biol Rev, vol.82, p.29436478, 2018.

J. Chen and T. Powers, Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae, Curr Genet, vol.49, p.16397762, 2006.

L. Cré-pin, T. Nidelet, I. Sanchez, S. Dequin, and C. Camarasa, Sequential Use of Nitrogen Compounds by Saccharomyces cerevisiae during Wine Fermentation: a Model Based on Kinetic and Regulation Characteristics of Nitrogen Permeases, Appl Environ Microbiol, vol.78, p.22983966, 2012.

L. Cré-pin, I. Sanchez, T. Nidelet, S. Dequin, and C. Camarasa, Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation, Microb Cell Fact, vol.13, p.25134990, 2014.

L. Cré-pin, N. M. Truong, A. Bloem, I. Sanchez, S. Dequin et al., Management of Multiple Nitrogen Sources during Wine Fermentation by Saccharomyces cerevisiae, Appl Environ Microbiol, vol.83, p.28115380, 2017.

A. Gutié-rrez, M. Sancho, G. Beltran, J. M. Guillamon, and J. Warringer, Replenishment and mobilization of intracellular nitrogen pools decouples wine yeast nitrogen uptake from growth, Appl Microbiol Biotechnol, vol.100, p.26754818, 2016.

C. Brice, F. A. Cubillos, S. Dequin, C. Camarasa, and C. Martínez, Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen, PLoS One, vol.13, p.29432462, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837841

C. Brice, I. Sanchez, C. Tesnière, and B. Blondin, Assessing the Mechanisms Responsible for Differences between Nitrogen Requirements of Saccharomyces cerevisiae Wine Yeasts in Alcoholic Fermentation

, Appl Environ Microbiol, vol.80, p.24334661, 2014.

A. Contreras, V. García, F. Salinas, U. Urzúa, M. A. Ganga et al., Identification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae, World J Microbiol Biotechnol, vol.28, p.22805832, 2012.

F. Cubillos, C. Brice, J. Molinet, S. Tisné, V. Abarca et al., Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses. G3:Genes| Genomes|Genetics, vol.7, p.28592651, 2017.

A. Gutié-rrez, R. Chiva, M. Sancho, G. Beltran, F. N. Arroyo-ló-pez et al., Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must, Food Microbiol. Elsevier Ltd, vol.31, p.22475939, 2012.

M. Jara, F. A. Cubillos, V. García, F. Salinas, O. Aguilera et al., Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter Yeasts. Palsson A, editor, PLoS One, vol.9, p.24466135, 2014.

C. Barbosa, J. García-martínez, J. E. Pé-rez-ortín, and A. Mendes-ferreira, Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availability, PLoS One, vol.10, p.25884705, 2015.

G. Beltran, M. Novo, N. Rozes, A. Mas, and J. Guillamon, Nitrogen catabolite repression in during wine fermentations, FEMS Yeast Res, vol.4, p.15040951, 2004.

S. Saerens, P. J. Verbelen, N. Vanbeneden, J. M. Thevelein, and F. R. Delvaux, Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast, Appl Microbiol Biotechnol, vol.80, p.18751696, 2008.

R. Chiva, I. Baiges, A. Mas, and J. M. Guillamon, The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation, J Appl Microbiol, vol.107, p.19302302, 2009.

C. Brice, I. Sanchez, F. Bigey, J. Legras, and B. Blondin, A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling, BMC Genomics, vol.15, p.24947828, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01189979

A. Gutié-rrez, G. Beltran, J. Warringer, and . Guillamó-n-jm, Genetic Basis of Variations in Nitrogen Source Utilization in Four Wine Commercial Yeast Strains, PLoS One, vol.8, p.23826223, 2013.

T. Rossignol, L. Dulau, A. Julien, and B. Blondin, Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation, Yeast, vol.20, p.14663829, 2003.

C. Tesnière, C. Brice, and B. Blondin, Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation, Appl Microbiol Biotechnol, vol.99, p.26201494, 2015.

M. E. Walker, T. D. Nguyen, T. Liccioli, F. Schmid, N. Kalatzis et al., Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae, BMC Genomics, vol.15, p.24993029, 2014.

F. A. Cubillos, L. Parts, F. Salinas, . Bergströ-m-a, E. Scovacricchi et al., High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population, Genetics, vol.195, p.24037264, 2013.

F. A. Cubillos, E. J. Louis, and G. Liti, Generation of a large set of genetically tractable haploid and diploid Saccharomyces strains, FEMS Yeast Res, vol.9, pp.1217-1225, 2009.

C. Martinez, V. García, D. Gonzá-lez, M. Jara, M. Aguilera et al., Gene expression of specific enological traits in wine fermentation, Electron J Biotechnol, vol.16, pp.4-11, 2013.

P. Marullo, M. Bely, I. Masneuf-pomarède, M. Pons, M. Aigle et al., Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model, FEMS Yeast Res, vol.6, p.16487348, 2006.

S. Gómez-alonso, I. Hermosín-gutié-rrez, and E. García-romero, Simultaneous HPLC Analysis of Biogenic Amines, Amino Acids, and Ammonium Ion as Aminoenone Derivatives in Wine and Beer Samples, J Agric Food Chem. American Chemical Society, vol.55, p.17263449, 2007.

T. L. Nissen, U. Schulze, J. Nielsen, and J. Villadsen, Flux Distributions in Anaerobic, Glucose-Limited Continuous Cultures of Saccharomyces cerevisiae, Microbiology, vol.143, p.9025295, 1997.

A. Bergströ-m, J. T. Simpson, F. Salinas, B. Barré, L. Parts et al., A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes, Mol Biol Evol, vol.31, p.24425782, 2014.

P. C. Ng and H. S. Sift, Predicting amino acid changes that affect protein function, Nucleic Acids Res, vol.31, p.12824425, 2003.

L. M. Steinmetz, H. Sinha, D. R. Richards, J. I. Spiegelman, P. J. Oefner et al., Dissecting the architecture of a quantitative trait locus in yeast, Nature, vol.416, p.11907579, 2002.

F. Salinas, D. Soto, V. Garcia, . Bergströ-m-a, and J. Warringer, The Genetic Basis of Natural Variation in Oenological Traits in Saccharomyces cerevisiae, PLoS One, vol.7, p.23185390, 2012.

J. Warringer and A. Blomberg, Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae, Yeast, vol.20, p.12489126, 2003.

S. Ibstedt, S. Stenberg, . Bagé-s-s, A. B. Gjuvsland, F. Salinas et al., Concerted Evolution of Life Stage Performances Signals Recent Selection on Yeast Nitrogen Use, Mol Biol Evol, vol.32, p.25349282, 2015.

M. H. Zwietering, I. L. Jongenburger, F. Rombouts, V. Riet, and K. , Modeling of the bacterial growth curve, Appl Environ Microbiol, vol.56, p.16348228, 1990.

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res, vol.29, p.11328886, 2001.

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes

, Genome Biol, vol.3, p.12184808, 2002.

M. Teste, M. Duquenne, J. M. François, and J. Parrou, Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae, BMC Mol Biol, vol.10, p.99, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01883063

J. Yuan, A. Reed, F. Chen, and C. N. Stewart, Statistical analysis of real-time PCR data, BMC Bioinformatics, vol.7, p.16504059, 2006.

J. Wang, D. Duncan, Z. Shi, and B. Zhang, WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013, Nucleic Acids Res, vol.41, p.23703215, 2013.

M. E. Cardenas, N. S. Cutler, M. C. Lorenz, D. Como, C. J. Heitman et al., The TOR signaling cascade regulates gene expression in response to nutrients, Genes Dev, vol.13, p.10617575, 1999.

I. Georis, A. Feller, J. J. Tate, T. G. Cooper, and E. Dubois, Nitrogen Catabolite Repression-Sensitive Transcription as a Readout of Tor Pathway Regulation: The Genetic Background, Reporter Gene and GATA Factor Assayed Determine the Outcomes, Genetics, vol.181, p.19104072, 2009.

C. Shin, S. Y. Kim, and W. Huh, TORC1 controls degradation of the transcription factor Stp1, a key effector of the SPS amino-acid-sensing pathway in Saccharomyces cerevisiae, J Cell Sci, vol.122, p.19494127, 2009.

J. Hong and D. Gresham, Molecular Specificity, Convergence and Constraint Shape Adaptive Evolution in Nutrient-Poor Environments, PLoS Genet, vol.10, p.24415948, 2014.

S. Treusch, F. W. Albert, J. S. Bloom, I. E. Kotenko, and L. Kruglyak, Genetic Mapping of MAPK-Mediated Complex Traits Across S. cerevisiae. Copenhaver GP, editor, PLoS Genet, vol.11, p.25569670, 2015.

E. I. Kessi-pé-rez, F. Salinas, J. Molinet, A. González, S. Muñiz et al., Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains, Yeast, 2018.

, , p.30094872

A. M. Marini, S. Soussi-boudekou, S. Vissers, and B. Andre, A family of ammonium transporters in Saccharomyces cerevisiae, Mol Cell Biol, vol.17, p.9234685, 1997.

B. Nelissen, Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae, FEMS Microbiol Rev, vol.21, p.9348664, 1997.

C. Gournas, M. Prévost, E. Krammer, and B. André, Function and Regulation of Fungal Amino Acid Transporters: Insights from Predicted Structure, Yeast Membrane Transport, pp.69-106, 2016.

J. Gerke, K. Lorenz, and B. Cohen, Genetic Interactions Between Transcription Factors Cause Natural Variation in Yeast. Science (80-), vol.323, p.19164747, 2009.

J. Gertz, J. P. Gerke, and B. Cohen, Epistasis in a quantitative trait captured by a molecular model of transcription factor interactions, Theor Popul Biol. Elsevier Inc, vol.77, pp.1-5, 2010.

J. C. Fay, The molecular basis of phenotypic variation in yeast, Curr Opin Genet Dev. Elsevier Ltd, vol.23, p.24269094, 2013.

J. Ono, A. C. Gerstein, and S. P. Otto, Widespread Genetic Incompatibilities between First-Step Mutations during Parallel Adaptation of Saccharomyces cerevisiae to a Common Environment, PLOS Biol, vol.15, p.28114370, 2017.

T. Mackay, The Genetic Architecture of Quantitative Traits, Annu Rev Genet, vol.35, pp.303-339, 2001.

P. Nghe, M. Kogenaru, and S. J. Tans, Sign epistasis caused by hierarchy within signalling cascades, Nat Commun. Springer US, vol.9, p.29654280, 2018.

G. Liti, D. M. Carter, A. M. Moses, J. Warringer, L. Parts et al., Population genomics of domestic and wild yeasts, Nature, vol.458, p.19212322, 2009.

M. Gao and C. A. Kaiser, A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast, Nat Cell Biol, vol.8, p.16732272, 2006.

C. Macdonald and R. C. Piper, Genetic dissection of early endosomal recycling highlights a TORC1-independent role for Rag GTPases, J Cell Biol, vol.216, p.28768685, 2017.

R. Gong, L. Li, Y. Liu, P. Wang, H. Yang et al., Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation, Genes Dev, vol.25, p.21816923, 2011.

P. Sengottaiyan, C. Spetea, J. O. Lagerstedt, D. Samyn, M. Andersson et al., The intrinsic GTPase activity of the Gtr1 protein from Saccharomyces cerevisiae, BMC Biochem, vol.13, p.22726655, 2012.

M. Boeckstaens, A. Merhi, E. Llinares, P. Van-vooren, J. Springael et al., Identification of a Novel Regulatory Mechanism of Nutrient Transport Controlled by TORC1-Npr1-Amu1/Par32, PLOS Genet, vol.11, p.26172854, 2015.

J. De-craene, O. Soetens, and B. André, The Npr1 Kinase Controls Biosynthetic and Endocytic Sorting of the Yeast Gap1 Permease, J Biol Chem, vol.276, p.11500493, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01771882

F. Salinas, C. G. De-boer, V. Abarca, V. García, M. Cuevas et al., Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Sci Rep, vol.6, p.21849, 2016.

R. Loewith and M. N. Hall, Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control, Genetics, vol.189, p.22174183, 2011.

J. R. Rohde, S. Campbell, S. A. Zurita-martinez, N. S. Cutler, M. Ashe et al., TOR Controls Transcriptional and Translational Programs via Sap-Sit4 Protein Phosphatase Signaling Effectors, Mol Cell Biol, vol.24, p.15367655, 2004.

A. Schmidt, T. Beck, A. Koller, J. Kunz, and M. N. Hall, The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease, EMBO J, vol.17, p.9843498, 1998.