P. N. Adler, . Wallingford, and . Jb, From Planar Cell Polarity to Ciliogenesis and Back: The Curious Tale of the PPE and CPLANE proteins, Trends Cell Biol, vol.27, pp.379-390, 2017.

A. Jord, A. Shihavuddin, A. Servignat-d'aout, R. Faucourt, M. Genovesio et al., Calibrated mitotic oscillator drives motile ciliogenesis, Science, vol.358, pp.803-806, 2017.

A. Amsterdam, R. M. Nissen, Z. Sun, . Swindell, . Ec et al., Identification of 315 genes essential for early zebrafish development, Proc Natl Acad Sci, vol.101, pp.12792-12797, 2004.

J. L. Badano, . Leitch, . Cc, . Ansley, . Sj et al., Dissection of epistasis in oligogenic Bardet-Biedl syndrome, Nature, vol.439, pp.326-330, 2006.

J. L. Badano, N. Mitsuma, P. L. Beales, and N. Katsanis, The ciliopathies: an emerging class of human genetic disorders, Annu Rev Genomics Hum Genet, vol.7, pp.125-148, 2006.

F. Bangs, . Anderson, and . Kv, Primary Cilia and Mammalian Hedgehog Signaling, Cold Spring Harb Perspect Biol, vol.9, 2017.

B. G. Barnes, Ciliated secretory cells in the pars distalis of the mouse hypophysis, J Ultrastruct Res, vol.5, pp.453-467, 1961.

M. M. Barr and S. , A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans, Nature, vol.401, pp.386-389, 1999.

M. Bernabé-rubio, . Alonso, and . Ma, Routes and machinery of primary cilium biogenesis, Cell Mol Life Sci, vol.74, pp.4077-4095, 2017.

M. Bernstein, . Beech, . Pl, S. G. Katz, and J. L. Rosenbaum, A new kinesin-like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum, J Cell Biol, vol.125, pp.1313-1326, 1994.

J. Birtel, Novel Insights Into the Phenotypical Spectrum of KIF11-Associated Retinopathy, Including a New Form of Retinal Ciliopathy, Invest Ophthalmol Vis Sci, vol.58, pp.3950-3959, 2017.

D. A. Braun and H. , Ciliopathies. Cold Spring Harb Perspect Biol, vol.9, 2017.

L. Broix, Ciliogenesis and cell cycle alterations contribute to KIF2A-related malformations of cortical development, Hum Mol Genet, vol.27, pp.224-238, 2018.

J. G. Buchan, . Gray, . Rs, J. M. Gansner, D. M. Alvarado et al., Kinesin family member 6 (kif6) is necessary for spine development in zebrafish, Dev Dyn, vol.243, pp.1646-1657, 2014.

Y. Cantaut-belarif, . Sternberg, . Jr, O. Thouvenin, C. Wyart et al., The Reissner Fiber in the Cerebrospinal Fluid Controls Morphogenesis of the Body Axis, Curr Biol, 2018.

M. Cardenas-rodriguez, F. Irigoín, . Osborn, . Dps, C. Gascue et al., The Bardet-Biedl syndrome-related protein CCDC28B modulates mTORC2 function and interacts with SIN1 to control cilia length independently of the mTOR complex, Hum Mol Genet, vol.22, pp.4031-4042, 2013.

M. Carleton, M. Mao, M. Biery, P. Warrener, S. Kim et al., RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure, Mol Cell Biol, vol.26, pp.3853-3863, 2006.

A. Castillo, . Justice, and . Mj, The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis, Biochem Biophys Res Commun, vol.357, pp.694-699, 2007.

M. Chauvière, C. Kress, and M. Kress, Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality, Biochem Biophys Res Commun, vol.372, pp.513-519, 2008.

T. Chauvin, F. Xie, T. Liu, . Nicora, . Cd et al., A Systematic Analysis of a Deep Mouse Epididymal Sperm Proteome, Biol Reprod, vol.87, 2012.

M. Chen, N. Gao, T. Kawakami, and P. Chuang, Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development, Mol Cell Biol, vol.25, pp.7042-7053, 2005.

H. Cheung, X. Zhang, A. Ribeiro, R. Mo, S. Makino et al., The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling, Sci Signal, vol.2, p.29, 2009.

S. P. Choksi, D. Babu, D. Lau, X. Yu, and S. Roy, Systematic discovery of novel ciliary genes through functional genomics in the zebrafish, Development, vol.141, pp.3410-3419, 2014.

S. Cornfine, M. Himmel, P. Kopp, E. Azzouzi, K. Wiesner et al., , 2011.

, The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes, Mol Biol Cell, vol.22, pp.202-215

R. A. Cross and A. Mcainsh, Prime movers: the mechanochemistry of mitotic kinesins, Nat Rev Mol Cell Biol, vol.15, pp.257-271, 2014.

C. Dafinger, Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics, J Clin Invest, vol.121, pp.2662-2667, 2011.

. De-robertis, Morphogenesis of the retinal rods; an electron microscope study, J Biophys Biochem Cytol, vol.2, pp.209-218, 1956.

N. Falk, M. Lösl, N. Schröder, and G. , Specialized Cilia in Mammalian Sensory Systems. Cells, vol.4, pp.500-519, 2015.

I. Filges, , 2013.

K. Fujikura, T. Setsu, K. Tanigaki, T. Abe, H. Kiyonari et al., Kif14 mutation causes severe brain malformation and hypomyelination, PLoS ONE, vol.8, p.53490, 2013.

V. Gache, E. R. Gomes, and B. Cadot, Microtubule motors involved in nuclear movement during skeletal muscle differentiation, Mol Biol Cell, vol.28, pp.865-874, 2017.

R. Ghossoub, A. Molla-herman, P. Bastin, and A. Benmerah, The ciliary pocket: a onceforgotten membrane domain at the base of cilia, Biol Cell, vol.103, pp.131-144, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02263813

D. T. Grimes, . Boswell, . Cw, . Morante, . Nfc et al., , 2016.

, Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature, Science, vol.352, pp.1341-1344

U. Gruneberg, R. Neef, X. Li, . Chan, . Ehy et al., KIF14 and citron kinase act together to promote efficient cytokinesis, J Cell Biol, vol.172, pp.363-372, 2006.

A. Guemez-gamboa, N. G. Coufal, . Gleeson, and . Jg, Primary cilia in the developing and mature brain, Neuron, vol.82, pp.511-521, 2014.

A. Hameed, E. Bennett, B. Ciani, . Hoebers, . Lpc et al., No evidence for cardiac dysfunction in Kif6 mutant mice, PLoS ONE, vol.8, p.54636, 2013.

M. He, R. Subramanian, F. Bangs, T. Omelchenko, . Liem et al., The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment, Nat Cell Biol, vol.16, pp.663-672, 2014.

M. M. Heck, A. Pereira, P. Pesavento, Y. Yannoni, A. C. Spradling et al., The kinesinlike protein KLP61F is essential for mitosis in Drosophila, J Cell Biol, vol.123, pp.665-679, 1993.

L. Heidet, Targeted Exome Sequencing Identifies PBX1 as Involved in Monogenic Congenital Anomalies of the Kidney and Urinary Tract, J Am Soc Nephrol, vol.28, pp.2901-2914, 2017.

N. Hirokawa, S. Niwa, and Y. Tanaka, Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease, Neuron, vol.68, pp.610-638, 2010.

N. Hirokawa, Y. Noda, Y. Tanaka, and S. Niwa, Kinesin superfamily motor proteins and intracellular transport, Nat Rev Mol Cell Biol, vol.10, pp.682-696, 2009.

S. Hoff, ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3, Nat Genet, vol.45, pp.951-956, 2013.

N. Homma, Y. Takei, Y. Tanaka, T. Nakata, S. Terada et al., , 2003.

, Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension, Cell, vol.114, pp.229-239

Z. Hu, Y. Liang, D. Meng, L. Wang, and J. Pan, Microtubule-depolymerizing kinesins in the regulation of assembly, disassembly, and length of cilia and flagella, Int Rev Cell Mol Biol, vol.317, pp.241-265, 2015.

K. Hua, . Ferland, and . Rj, Primary cilia proteins: ciliary and extraciliary sites and functions, Cell Mol Life Sci, vol.75, pp.1521-1540, 2018.

C. Huber and . Cormier-daire, Ciliary disorder of the skeleton, Am J Med Genet C Semin Med Genet, vol.160, pp.165-174, 2012.

C. Insinna, N. Pathak, B. Perkins, I. Drummond, and J. C. Besharse, The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development, Dev Biol, vol.316, pp.160-170, 2008.

H. Ishikawa, . Marshall, and . Wf, Ciliogenesis: building the cell's antenna, Nat Rev Mol Cell Biol, vol.12, pp.222-234, 2011.

B. V. Jacquet, R. Salinas-mondragon, H. Liang, B. Therit, J. D. Buie et al., FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain, Development, vol.136, pp.4021-4031, 2009.

P. M. Jenkins, . Hurd, . Tw, L. Zhang, . Mcewen et al., Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17, Curr Biol, vol.16, pp.1211-1216, 2006.

L. Jiang, . Tam, . Bm, G. Ying, S. Wu et al., , 2015.

, Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function, FASEB J, vol.29, pp.4866-4880

K. Johnson, Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube, Dev Biol, vol.387, pp.73-92, 2014.

Y. Kanai, D. Wang, and N. Hirokawa, KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae, J Cell Biol, vol.204, pp.395-408, 2014.

S. Kim, K. Lee, J. Choi, N. Ringstad, . Dynlacht et al., Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle, Nat Commun, vol.6, p.8087, 2015.

T. Kobayashi, . Tsang, . Wy, J. Li, W. Lane et al., Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis, Cell, vol.145, pp.914-925, 2011.

M. J. Konjikusic, Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development, PLoS Genet, vol.14, 2018.

A. Konno, K. Shiba, C. Cai, and K. Inaba, Branchial Cilia and Sperm Flagella Recruit Distinct Axonemal Components, PLoS One, vol.10, p.126005, 2015.

K. G. Kozminski, P. L. Beech, and J. L. Rosenbaum, The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane, J Cell Biol, vol.131, pp.1517-1527, 1995.

M. Kraus, S. Clauin, Y. Pfister, D. Maïo, M. Ulinski et al., Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia, Hum Mutat, vol.33, pp.86-90, 2012.

A. Leaf, V. Zastrow, and M. , Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia, 2015.

K. F. Lechtreck, IFT-Cargo Interactions and Protein Transport in Cilia, Trends Biochem Sci, vol.40, pp.765-778, 2015.

K. Lechtreck, . Witman, and . Gb, Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility, J Cell Biol, vol.176, pp.473-482, 2007.

S. Lee, K. Joo, . Jung, . Ej, H. Hong et al., Export of membrane proteins from the Golgi complex to the primary cilium requires the kinesin motor, KIFC1, FASEB J, vol.32, pp.957-968, 2018.

T. R. Lewis, . Kundinger, . Sr, . Link, . Ba et al., Kif17 phosphorylation regulates photoreceptor outer segment turnover, BMC Cell Biol, vol.19, p.25, 2018.

T. R. Lewis, . Kundinger, . Sr, A. L. Pavlovich, . Bostrom et al., Cos2/Kif7 and Osm-3/Kif17 regulate onset of outer segment development in zebrafish photoreceptors through distinct mechanisms, Dev Biol, vol.425, pp.176-190, 2017.

K. F. Liem, M. He, P. Ocbina, . Anderson, and . Kv, Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling, Proc Natl Acad Sci, vol.106, pp.13377-13382, 2009.

P. Makrythanasis, Biallelic variants in KIF14 cause intellectual disability with microcephaly, Eur J Hum Genet, vol.26, pp.330-339, 2018.

J. Mazelova, L. Astuto-gribble, H. Inoue, . Tam, . Bm et al., Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4, EMBO J, vol.28, pp.183-192, 2009.

T. Mchugh, A. A. Gluszek, . Welburn, and . Jpi, Microtubule end tethering of a processive kinesin-8 motor Kif18b is required for spindle positioning, J Cell Biol, vol.217, pp.2403-2416, 2018.

A. Meunier and J. Azimzadeh, Multiciliated Cells in Animals, Cold Spring Harb Perspect Biol, vol.8, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471943

H. M. Mitchison and E. M. Valente, Motile and non-motile cilia in human pathology: from function to phenotypes, J Pathol, vol.241, pp.294-309, 2017.

T. Miyamoto, K. Hosoba, H. Ochiai, E. Royba, H. Izumi et al., The Microtubule-Depolymerizing Activity of a Mitotic Kinesin Protein KIF2A Drives Primary Cilia Disassembly Coupled with Cell Proliferation, Cell Rep, 2015.

A. Moawia, Mutations of KIF14 cause primary microcephaly by impairing cytokinesis, Ann Neurol, vol.82, pp.562-577, 2017.

S. K. Morthorst, S. T. Christensen, . Pedersen, and . Lb, Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins, FEBS J, 2018.

M. V. Nachury, The molecular machines that traffic signaling receptors into and out of cilia, Curr Opin Cell Biol, vol.51, pp.124-131, 2018.

K. Nakayama and Y. Katoh, Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors, J Biochem, vol.163, pp.155-164, 2018.

S. Nath, E. Bananis, S. Sarkar, . Stockert, . Rj et al., Kif5B and Kifc1 interact and are required for motility and fission of early endocytic vesicles in mouse liver, Mol Biol Cell, vol.18, pp.1839-1849, 2007.

S. Niwa, K. Nakajima, H. Miki, Y. Minato, D. Wang et al., KIF19A is a microtubuledepolymerizing kinesin for ciliary length control, Dev Cell, vol.23, pp.1167-1175, 2012.

R. Novas, Kinesin 1 regulates cilia length through an interaction with the Bardet-Biedl syndrome related protein CCDC28B, Sci Rep, vol.8, p.3019, 2018.

Y. I. Nozawa, E. Yao, C. Lin, Y. , J. Wilson et al., Fused (Stk36) is a ciliary protein required for central pair assembly and motile cilia orientation in the mammalian oviduct, Dev Dyn, vol.242, pp.1307-1319, 2013.

H. Olbrich, Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry, Am J Hum Genet, vol.91, pp.672-684, 2012.

P. Ostergaard, Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy, Am J Hum Genet, vol.90, pp.356-362, 2012.

T. J. Park, . Mitchell, . Bj, . Abitua, . Pb et al., Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells, Nat Genet, vol.40, pp.871-879, 2008.

G. J. Pazour, . Dickert, . Bl, Y. Vucica, . Seeley et al., , 2000.

, Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella, J Cell Biol, vol.151, pp.709-718

E. M. Peden, . Barr, and . Mm, The KLP-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans, Curr Biol, vol.15, pp.394-404, 2005.

L. B. Pedersen, J. B. Mogensen, . Christensen, and . St, Endocytic Control of Cellular Signaling at the Primary Cilium, Trends Biochem Sci, vol.41, pp.784-797, 2016.

K. Poirier, Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly, Nat Genet, vol.45, pp.639-647, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00838073

A. Putoux, KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes, Nat Genet, vol.43, pp.601-606, 2011.

A. Putoux, Novel KIF7 mutations extend the phenotypic spectrum of acrocallosal syndrome, J Med Genet, vol.49, pp.713-720, 2012.

A. Rahman, A. Kamal, E. A. Roberts, . Goldstein, and . Ls, Defective kinesin heavy chain behavior in mouse kinesin light chain mutants, J Cell Biol, vol.146, pp.1277-1288, 1999.

M. L. Reilly, Loss of function mutations in KIF14 cause severe microcephaly and kidney development defects in humans and zebrafish, Hum Mol Genet, 2018.

J. F. Reiter, . Leroux, and . Mr, Genes and molecular pathways underpinning ciliopathies, Nat Rev Mol Cell Biol, vol.18, pp.533-547, 2017.

J. C. Rink, K. A. Gurley, S. A. Elliott, and S. Alvarado, Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia, Science, vol.326, pp.1406-1410, 2009.

A. J. Ross, L. A. Dailey, L. E. Brighton, . Devlin, and . Rb, Transcriptional profiling of mucociliary differentiation in human airway epithelial cells, Am J Respir Cell Mol Biol, vol.37, pp.169-185, 2007.

I. Sánchez, . Dynlacht, and . Bd, Cilium assembly and disassembly, Nat Cell Biol, vol.18, pp.711-717, 2016.

A. Santos-ledo, M. Garcia-macia, . Campbell, . Pd, M. Gronska et al., Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis, PLoS Genet, vol.13, 2017.

P. Satir, . Christensen, and . St, Overview of structure and function of mammalian cilia, Annu Rev Physiol, vol.69, pp.377-400, 2007.

K. E. Sawin, K. Leguellec, P. , M. Mitchison, and . Tj, Mitotic spindle organization by a plusend-directed microtubule motor, Nature, vol.359, pp.540-543, 1992.

J. M. Scholey, Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions, Annu Rev Cell Dev Biol, vol.29, pp.443-469, 2013.

K. B. Schou, KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling, Nat Commun, vol.8, 2017.

J. M. Schrøder, EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms, J Cell Sci, vol.124, pp.2539-2551, 2011.

H. E. Shamseldin, . Yakulov, . Ta, A. Hashem, G. Walz et al., ANKS3 is mutated in a family with autosomal recessive laterality defect, Hum Genet, 2016.

J. J. Snow, G. Ou, A. L. Gunnarson, . Walker, . Mrs et al., Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons, Nat Cell Biol, vol.6, pp.1109-1113, 2004.

R. Song, miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110, Nature, vol.510, pp.115-120, 2014.

Z. Song, X. Zhang, S. Jia, P. C. Yelick, and C. Zhao, Zebrafish as a Model for Human Ciliopathies, J Genet Genomics, vol.43, pp.107-120, 2016.

S. P. Sorokin, Reconstructions of centriole formation and ciliogenesis in mammalian lungs, J Cell Sci, vol.3, pp.207-230, 1968.

J. R. Stout, A. L. Yount, J. A. Powers, C. Leblanc, S. C. Ems-mcclung et al., Kif18B interacts with EB1 and controls astral microtubule length during mitosis, Mol Biol Cell, vol.22, pp.3070-3080, 2011.

K. Tanaka, Y. Sugiura, R. Ichishita, K. Mihara, and T. Oka, KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells, J Cell Sci, vol.124, pp.2457-2465, 2011.

Y. Tanaka, Y. Kanai, Y. Okada, S. Nonaka, S. Takeda et al., Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria, Cell, vol.93, pp.1147-1158, 1998.

M. E. Tanenbaum, L. Macurek, B. Van-der-vaart, M. Galli, A. Akhmanova et al., A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases, Curr Biol, vol.21, pp.1356-1365, 2011.

J. Thomas, L. Morlé, F. Soulavie, A. Laurençon, S. Sagnol et al., Transcriptional control of genes involved in ciliogenesis: a first step in making cilia, Biol Cell, vol.102, pp.499-513, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00709351

K. J. Verhey and J. W. Hammond, Traffic control: regulation of kinesin motors, Nat Rev Mol Cell Biol, vol.10, pp.765-777, 2009.

L. Vincensini, T. Blisnick, and P. Bastin, 1001 model organisms to study cilia and flagella, Biol Cell, vol.103, pp.109-130, 2011.

P. Vogel, . Read, . Rw, G. M. Hansen, . Payne et al., Congenital hydrocephalus in genetically engineered mice, Vet Pathol, vol.49, pp.166-181, 2012.

Y. Wakana, J. Villeneuve, J. Van-galen, D. Cruz-garcia, M. Tagaya et al., Kinesin, 2013.

, Eg5 is important for transport of CARTS from the trans-Golgi network to the cell surface, J Cell Biol, vol.202, pp.241-250

C. E. Walczak, S. Gayek, and R. Ohi, Microtubule-depolymerizing kinesins, Annu Rev Cell Dev Biol, vol.29, pp.417-441, 2013.

P. Walentek, . Quigley, . Ik, . Sun, . Di et al., Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis, 2016.

D. Wang, R. Nitta, M. Morikawa, H. Yajima, S. Inoue et al., Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, 2016.

J. Wang, M. Silva, L. A. Haas, . Morsci, . Ns et al., C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication, Curr Biol, vol.24, pp.519-525, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

G. Wheway, L. Nazlamova, and J. T. Hancock, Signaling through the Primary Cilium, Front Cell Dev Biol, vol.6, 2018.

C. L. Williams, J. C. Mcintyre, . Norris, . Sr, P. M. Jenkins et al., Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia, Nat Commun, vol.5, p.5813, 2014.

C. W. Wilson, . Nguyen, C. Ct, M. , Y. et al., Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis, Nature, vol.459, pp.98-102, 2009.

C. Wu, C. , H. Tang, and . Tk, Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis, Nat Cell Biol, vol.20, pp.175-185, 2018.

Y. Xu, S. Takeda, T. Nakata, Y. Noda, Y. Tanaka et al., Role of KIFC3 motor protein in Golgi positioning and integration, J Cell Biol, vol.158, pp.293-303, 2002.

S. P. Yadav, . Sharma, . Nk, C. Liu, L. Dong et al., Centrosomal protein CP110 controls maturation of the mother centriole during cilia biogenesis, Development, vol.143, pp.1491-1501, 2016.

Z. Yang, E. A. Roberts, . Goldstein, and . Ls, Functional analysis of mouse C-terminal kinesin motor KifC2, Mol Cell Biol, vol.21, pp.2463-2466, 2001.

Z. Yang, C. Xia, . Roberts, . Ea, K. Bush et al., Molecular cloning and functional analysis of mouse C-terminal kinesin motor KifC3, Mol Cell Biol, vol.21, pp.765-770, 2001.

X. Yin, Y. Takei, M. A. Kido, and N. Hirokawa, Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels, Neuron, vol.70, pp.310-325, 2011.

R. Yokoyama, E. O'toole, S. Ghosh, . Mitchell, and . Dr, Regulation of flagellar dynein activity by a central pair kinesin, Proc Natl Acad Sci, vol.101, pp.17398-17403, 2004.

K. Yu, S. Mcglynn, . Matise, and . Mp, Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord, Development, vol.140, pp.1594-1604, 2013.

Y. Yue, . Blasius, . Tl, S. Zhang, S. Jariwala et al., , 2018.

, Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7, J Cell Biol, vol.217, pp.1319-1334

C. Zhao, Y. Omori, K. Brodowska, P. Kovach, and M. , Kinesin-2 family in vertebrate ciliogenesis, Proc Natl Acad Sci, vol.109, pp.2388-2393, 2012.