N. Nicolaou, K. Y. Renkema, E. M. Bongers, R. H. Giles, and N. V. Knoers, Genetic, environmental, and epigenetic factors involved in CAKUT, Nat. Rev. Nephrol, vol.11, pp.720-731, 2015.

D. A. Braun and F. Hildebrandt, Ciliopathies. Cold Spring Harb. Perspect. Biol, vol.9, 2017.

A. P. Mcmahon, Development of the Mammalian Kidney, Curr. Top. Dev. Biol, vol.117, pp.31-64, 2016.

J. C. Seely, A brief review of kidney development, maturation, developmental abnormalities, and drug toxicity: juvenile animal relevancy, J. Toxicol. Pathol, vol.30, pp.125-133, 2017.

I. A. Drummond and A. J. Davidson, Zebrafish kidney development, Methods Cell Biol, vol.134, pp.391-429, 2016.

S. J. Poureetezadi and R. A. Wingert, Little fish, big catch: zebrafish as a model for kidney disease, Kidney Int, vol.89, pp.1204-1210, 2016.

N. Uy and K. Reidy, Developmental Genetics and Congenital Anomalies of the Kidney and Urinary Tract, J. Pediatr. Genet, vol.5, pp.51-60, 2016.

H. Barak, S. Huh, S. Chen, C. Jeanpierre, J. Martinovic et al., FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man, Dev. Cell, vol.22, pp.1191-1207, 2012.

L. De-tomasi, P. David, C. Humbert, F. Silbermann, C. Arrondel et al., Mutations in GREB1L Cause Bilateral Kidney Agenesis in Humans and Mice, Am. J. Hum. Genet, vol.101, pp.803-814, 2017.

C. Humbert, F. Silbermann, B. Morar, M. Parisot, M. Zarhrate et al., Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans, Am. J. Hum. Genet, vol.94, pp.288-294, 2014.

I. Filges, E. Nosova, E. Bruder, S. Tercanli, K. Townsend et al., Exome sequencing identifies mutations in KIF14 as a novel cause of an autosomal recessive lethal fetal ciliopathy phenotype, Clin. Genet, vol.86, pp.220-228, 2014.

L. Heidet, V. Morinière, C. Henry, L. De-tomasi, M. L. Reilly et al., Targeted Exome Sequencing Identifies PBX1 as Involved in Monogenic Congenital Anomalies of the Kidney and Urinary Tract, J. Am. Soc. Nephrol. JASN, vol.28, pp.2901-2914, 2017.

J. T. Paridaen and W. B. Huttner, Neurogenesis during development of the vertebrate central nervous system, EMBO Rep, vol.15, pp.351-364, 2014.

D. M. Romero, N. Bahi-buisson, and F. Francis, Genetics and mechanisms leading to human cortical malformations, Semin. Cell Dev. Biol, vol.76, pp.33-75, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01626222

K. J. Verhey, N. Kaul, and V. Soppina, Kinesin assembly and movement in cells, Annu. Rev. Biophys, vol.40, pp.267-288, 2011.

K. Arora, L. Talje, A. B. Asenjo, P. Andersen, K. Atchia et al., KIF14 Binds Tightly to Microtubules and Adopts a Rigor-Like Conformation, J. Mol. Biol, vol.426, pp.2997-3015, 2014.

M. Carleton, M. Mao, M. Biery, P. Warrener, S. Kim et al., RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure, Mol. Cell. Biol, vol.26, pp.3853-3863, 2006.

U. Gruneberg, R. Neef, X. Li, E. H. Chan, R. B. Chalamalasetty et al., KIF14 and citron kinase act together to promote efficient cytokinesis, J. Cell Biol, vol.172, pp.363-372, 2006.

P. P. D'avino, M. G. Giansanti, and M. Petronczki, Cytokinesis in animal cells, Cold Spring Harb. Perspect. Biol, vol.7, p.15834, 2015.

Z. I. Bassi, M. Audusseau, M. G. Riparbelli, G. Callaini, and P. P. Avino, Citron kinase controls a molecular network required for midbody formation in cytokinesis, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.9782-9787, 2013.

S. Watanabe, T. De-zan, T. Ishizaki, and S. Narumiya, Citron kinase mediates transition from constriction to abscission through its coiled-coil domain, J. Cell Sci, vol.126, pp.1773-1784, 2013.

L. K. Dionne, X. Wang, and R. Prekeris, Midbody: from cellular junk to regulator of cell polarity and cell fate, Curr. Opin. Cell Biol, vol.35, pp.51-58, 2015.

S. M. Ahmed, B. L. Thériault, M. Uppalapati, C. W. Chiu, B. L. Gallie et al., KIF14 negatively regulates Rap1a-Radil signaling during breast cancer progression, J. Cell Biol, vol.199, pp.951-967, 2012.

L. Alphey, L. Parker, G. Hawcroft, Y. Guo, K. Kaiser et al., KLP38B: a mitotic kinesin-related protein that binds PP1, J. Cell Biol, vol.138, pp.395-409, 1997.

I. Molina, S. Baars, J. A. Brill, K. G. Hales, M. T. Fuller et al., A chromatin-associated kinesin-related protein required for normal mitotic chromosome segregation in Drosophila, J. Cell Biol, vol.139, pp.1361-1371, 1997.

H. Ohkura, T. Török, G. Tick, J. Hoheisel, I. Kiss et al., Mutation of a gene for a Drosophila kinesin-like protein, Klp38B, leads to failure of cytokinesis, J. Cell Sci, vol.110, pp.945-954, 1997.

D. M. Ruden, W. Cui, V. Sollars, and M. Alterman, A Drosophila kinesin-like protein, Klp38B, functions during meiosis, mitosis, and segmentation, Dev. Biol, vol.191, pp.284-296, 1997.

K. Fujikura, T. Setsu, K. Tanigaki, T. Abe, H. Kiyonari et al., Kif14 mutation causes severe brain malformation and hypomyelination, PloS One, vol.8, p.53490, 2013.

P. Makrythanasis, R. Maroofian, A. Stray-pedersen, D. Musaev, M. S. Zaki et al., Biallelic variants in KIF14 cause intellectual disability with microcephaly, Eur. J. Hum. Genet. EJHG, vol.26, pp.330-339, 2018.

A. Moawia, R. Shaheen, S. Rasool, S. S. Waseem, N. Ewida et al., Mutations of KIF14 cause primary microcephaly by impairing cytokinesis, Ann. Neurol, vol.82, pp.562-577, 2017.

S. Basit, K. M. Al-harbi, S. A. Alhijji, A. M. Albalawi, E. Alharby et al., CIT, a gene involved in neurogenic cytokinesis, is mutated in human primary microcephaly, Hum. Genet, vol.135, pp.1199-1207, 2016.

B. N. Harding, A. Moccia, S. Drunat, O. Soukarieh, H. Tubeuf et al., Mutations in Citron Kinase Cause Recessive Microlissencephaly with Multinucleated Neurons, Am. J. Hum. Genet, vol.99, pp.511-520, 2016.

H. Li, S. L. Bielas, M. S. Zaki, S. Ismail, D. Farfara et al., Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly, Am. J. Hum. Genet, vol.99, pp.501-510, 2016.

R. Shaheen, A. Hashem, G. M. Abdel-salam, F. Al-fadhli, N. Ewida et al., Mutations in CIT, encoding citron rho-interacting serine/threonine kinase, cause severe primary microcephaly in humans, Hum. Genet, vol.135, pp.1191-1197, 2016.

T. M. Kapoor and T. J. Mitchison, Allele-specific activators and inhibitors for kinesin, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.9106-9111, 1999.

A. Packard, K. Georgas, O. Michos, P. Riccio, C. Cebrian et al., Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud, Dev. Cell, vol.27, pp.319-330, 2013.

R. N. Kettleborough, E. M. Busch-nentwich, S. A. Harvey, C. M. Dooley, E. De-bruijn et al., A systematic genome-wide analysis of zebrafish protein-coding gene function, Nature, vol.496, pp.494-497, 2013.

L. A. Lowery and H. Sive, Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products, Dev. Camb. Engl, vol.132, pp.2057-2067, 2005.

C. Novorol, J. Burkhardt, K. J. Wood, A. Iqbal, C. Roque et al., Microcephaly models in the developing zebrafish retinal neuroepithelium point to an underlying defect in metaphase progression, Open Biol, vol.3, pp.130065-130065, 2013.

A. N. Marra, Y. Li, and R. A. Wingert, Antennas of organ morphogenesis: the roles of cilia in vertebrate kidney development, vol.54, pp.457-469, 2000.

B. Perner, C. Englert, and F. Bollig, The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros, Dev. Biol, vol.309, pp.87-96, 2007.

Y. W. Lundberg, Y. Xu, K. D. Thiessen, and K. L. Kramer, Mechanisms of otoconia and otolith development, Dev. Dyn. Off. Publ. Am. Assoc. Anat, vol.244, pp.239-253, 2015.

A. Borovina, S. Superina, D. Voskas, and B. Ciruna, Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia, Nat. Cell Biol, vol.12, pp.407-412, 2010.

A. A. Bizet, A. Becker-heck, R. Ryan, K. Weber, E. Filhol et al., Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization, vol.6, p.8666, 2015.

C. Burcklé, H. Gaudé, C. Vesque, F. Silbermann, R. Salomon et al., Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros, Hum. Mol. Genet, vol.20, pp.2611-2627, 2011.

S. G. Basten and R. H. Giles, Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis, 2013.

P. Haas and D. Gilmour, Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line, Dev. Cell, vol.10, pp.673-680, 2006.

A. Vasilyev, Y. Liu, N. Hellman, N. Pathak, and I. A. Drummond, Mechanical stretch and PI3K signaling link cell migration and proliferation to coordinate epithelial tubule morphogenesis in the zebrafish pronephros, PloS One, vol.7, p.39992, 2012.

B. G. Cooperstone, A. Friedman, and B. S. Kaplan, Galloway-Mowat syndrome of abnormal gyral patterns and glomerulopathy, Am. J. Med. Genet, vol.47, pp.250-254, 1993.

S. Sanna-cherchi, R. Westland, G. M. Ghiggeri, and A. G. Gharavi, Genetic basis of human congenital anomalies of the kidney and urinary tract, J. Clin. Invest, vol.128, pp.4-15, 2018.

L. Broix, L. Asselin, C. G. Silva, E. L. Ivanova, P. Tilly et al., Ciliogenesis and cell cycle alterations contribute to KIF2A-related malformations of cortical development, Hum. Mol. Genet, vol.27, pp.224-238, 2018.

V. Grampa, M. Delous, M. Zaidan, G. Odye, S. Thomas et al., Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation, PLoS Genet, vol.12, p.1005894, 2016.

C. Quélin, P. Loget, L. Boutaud, N. Elkhartoufi, J. Milon et al., Loss of function IFT27 variants associated with an unclassified lethal fetal ciliopathy with renal agenesis, Am. J. Med. Genet. A, 2018.

V. Dubreuil, A. Marzesco, D. Corbeil, W. B. Huttner, and M. Wilsch-bräuninger, Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1, J. Cell Biol, vol.176, pp.483-495, 2007.

N. O. Lindström, J. A. Mcmahon, J. Guo, T. Tran, Q. Guo et al., Conserved and Divergent Features of Human and Mouse Kidney Organogenesis, J. Am. Soc. Nephrol. JASN, vol.29, pp.785-805, 2018.

N. O. Lindström, G. De-sena-brandine, T. Tran, A. Ransick, G. Suh et al., Progressive Recruitment of Mesenchymal Progenitors Reveals a Time-Dependent Process of Cell Fate Acquisition in Mouse and Human Nephrogenesis, Dev. Cell, vol.45, pp.651-660, 2018.

S. Jiang, Y. Chiou, E. Wang, H. Lin, S. Lee et al., Targeted disruption of Nphp1 causes male infertility due to defects in the later steps of sperm morphogenesis in mice, Hum. Mol. Genet, vol.17, pp.3368-3379, 2008.

J. Won, C. Marín-de-evsikova, R. S. Smith, W. L. Hicks, M. M. Edwards et al., NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development, Hum. Mol. Genet, vol.20, pp.482-496, 2011.

M. Bernabé-rubio, G. Andrés, J. Casares-arias, J. Fernández-barrera, L. Rangel et al., Novel role for the midbody in primary ciliogenesis by polarized epithelial cells, J. Cell Biol, 2016.

W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle et al., The human genome browser at UCSC, Genome Res, vol.12, pp.996-1006, 2002.

B. L. Aken, P. Achuthan, W. Akanni, M. R. Amode, F. Bernsdorff et al., Nucleic Acids Res, vol.45, pp.635-642, 2017.

S. Solinet, K. Mahmud, S. F. Stewman, K. Ben-el-kadhi, B. Decelle et al., The actin-binding ERM protein Moesin binds to and stabilizes microtubules at the cell cortex, J. Cell Biol, vol.202, pp.251-260, 2013.

F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott et al., Genome engineering using the CRISPR-Cas9 system, Nat. Protoc, vol.8, pp.2281-2308, 2013.

, Phospho-histone H3 (PH3)