D. N. Louis, A. Perry, G. Reifenberger, A. Von-deimling, D. Figarellabranger et al., The 2016 World Health Organization classification of tumors of the central nervous system: a summary, Acta Neuropathol, vol.131, pp.803-823, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479018

R. Stupp, M. E. Hegi, W. P. Mason, M. J. Van-den-bent, M. J. Taphoorn et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, Lancet Oncol, vol.10, pp.459-66, 2009.

O. Gusyatiner and M. E. Hegi, Glioma epigenetics: from subclassification to novel treatment options, Semin Cancer Biol, vol.51, pp.50-58, 2018.

D. Garnier, B. Meehan, T. Kislinger, P. Daniel, A. Sinha et al., Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization, Neuro Oncol, vol.20, pp.236-284, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01814308

B. E. Johnson, T. Mazor, C. Hong, M. Barnes, K. Aihara et al., Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma, Science, vol.343, pp.189-93, 2014.

J. Wang, E. Cazzato, E. Ladewig, V. Frattini, D. Rosenbloom et al., Clonal evolution of glioblastoma under therapy, Nat Genet, vol.48, pp.768-76, 2016.

R. Chen, M. C. Nishimura, S. M. Bumbaca, S. Kharbanda, W. F. Forrest et al., A hierarchy of self-renewing tumor-initiating cell types in glioblastoma, Cancer Cell, vol.17, pp.362-75, 2010.

S. K. Singh, C. Hawkins, I. D. Clarke, J. A. Squire, J. Bayani et al., Identification of human brain tumour initiating cells, Nature, vol.432, pp.396-401, 2004.

X. Lan, D. J. Jörg, F. Cavalli, L. M. Richards, L. V. Nguyen et al., Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy, Nature, vol.549, pp.227-259, 2017.

C. L. Chaffer, I. Brueckmann, C. Scheel, A. J. Kaestli, P. A. Wiggins et al., Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state, Proc Natl Acad Sci, vol.108, pp.7950-7955, 2011.

E. Quintana, M. Shackleton, H. R. Foster, D. R. Fullen, M. S. Sabel et al., Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized, Cancer Cell, vol.18, pp.510-533, 2010.

M. Shackleton, E. Quintana, E. R. Fearon, and S. J. Morrison, Heterogeneity in Cancer: cancer stem cells versus clonal evolution, Cell, vol.138, pp.822-831, 2009.

A. Kreso and J. E. Dick, Evolution of the cancer stem cell model, Cell Stem Cell, vol.14, pp.275-91, 2014.

S. Guelfi, H. Duffau, L. Bauchet, B. Rothhut, and J. Hugnot, Vascular transdifferentiation in the CNS: a focus on neural and glioblastoma stem-like cells, Stem Cells Int, p.2759403, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01818641

J. Chen, Y. Li, T. Yu, R. M. Mckay, D. K. Burns et al., A restricted cell population propagates glioblastoma growth after chemotherapy, Nature, vol.488, pp.522-528, 2012.

A. Eramo, L. Ricci-vitiani, A. Zeuner, R. Pallini, F. Lotti et al., Chemotherapy resistance of glioblastoma stem cells, Cell Death Differ, vol.13, pp.1238-1279, 2006.

S. Bao, Q. Wu, R. E. Mclendon, Y. Hao, Q. Shi et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, vol.444, pp.756-60, 2006.

E. Binda, A. Visioli, F. Giani, N. Trivieri, O. Palumbo et al., Wnt5a drives an invasive phenotype in human glioblastoma stem-like cells, Cancer Res, vol.77, pp.996-1007, 2017.

B. Hu, Q. Wang, Y. A. Wang, S. Hua, C. Sauvé et al., Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth, Cell, vol.167, pp.1281-95, 2016.

B. Krusche, C. Ottone, M. P. Clements, E. R. Johnstone, K. Goetsch et al., EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells, Elife, vol.5, 2016.

J. M. Heddleston, Z. Li, R. E. Mclendon, A. B. Hjelmeland, J. N. Rich et al., The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a Cancer stem cell phenotype, Cell Cycle Georget Tex, vol.8, pp.3274-84, 2009.

B. Auffinger, A. L. Tobias, Y. Han, G. Lee, D. Guo et al., Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy, Cell Death Differ, vol.21, pp.1119-1150, 2014.

P. Dahan, M. Gala, J. Delmas, C. Monferran, S. Malric et al., Ionizing radiations sustain glioblastoma cell dedifferentiation to a stemlike phenotype through survivin: possible involvement in radioresistance, Cell Death Dis, vol.5, 2014.

A. D. Berezovsky, L. M. Poisson, D. Cherba, C. P. Webb, A. D. Transou et al., Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation, Neoplasia, vol.16, pp.193-206, 2014.

Y. Li, A. Li, M. Glas, B. Lal, M. Ying et al., Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype, Proc Natl Acad Sci, vol.108, pp.9951-9957, 2011.

H. S. Phillips, S. Kharbanda, R. Chen, W. F. Forrest, R. H. Soriano et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis, Cancer Cell, vol.9, pp.157-73, 2006.

R. Verhaak, K. A. Hoadley, E. Purdom, V. Wang, Y. Qi et al., Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell, vol.17, pp.98-110, 2010.

Q. Wang, B. Hu, X. Hu, H. Kim, M. Squatrito et al., Tumor evolution of glioma intrinsic gene expression subtype associates with immunological changes in the microenvironment, Cancer Cells, vol.32, pp.42-56, 2017.

U. R. Chandran, S. Luthra, L. Santana-santos, P. Mao, S. H. Kim et al., Gene expression profiling distinguishes proneural glioma stem cells from mesenchymal glioma stem cells, Genomics Data, vol.5, pp.333-339, 2015.

X. Jin, L. Kim, Q. Wu, L. C. Wallace, B. C. Prager et al., Targeting glioma stem cells through combined BMI1 and EZH2 inhibition, Nat Med, vol.23, pp.1352-61, 2017.

P. Mao, K. Joshi, J. Li, S. Kim, P. Li et al., Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3, Proc Natl Acad Sci, vol.110, pp.8644-8653, 2013.

A. Llaguno, S. R. Wang, Z. Sun, D. Chen, J. Xu et al., Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes, Cancer Cell, vol.28, pp.429-469, 2015.

A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma, Science, vol.344, pp.1396-401, 2014.

A. Sottoriva, I. Spiteri, S. Piccirillo, A. Touloumis, V. P. Collins et al., Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics, Proc Natl Acad Sci, vol.110, pp.4009-4023, 2013.

J. Halliday, K. Helmy, S. S. Pattwell, K. L. Pitter, Q. Laplant et al., In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural-mesenchymal shift, Proc Natl Acad Sci, vol.111, pp.5248-53, 2014.

T. Ozawa, M. Riester, Y. Cheng, J. T. Huse, M. Squatrito et al., Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma, Cancer Cell, vol.26, pp.288-300, 2014.

M. Touat, A. Idbaih, M. Sanson, and K. L. Ligon, Glioblastoma targeted therapy: updated approaches from recent biological insights, Ann Oncol, vol.28, pp.1457-72, 2017.

A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis et al., Cancer stem cell hierarchy in glioblastoma multiforme, Front Surg, vol.3, p.21, 2016.

K. Oizel, C. Chauvin, L. Oliver, C. Gratas, F. Geraldo et al., Efficient mitochondrial glutamine targeting prevails over glioblastoma metabolic plasticity, Clin Cancer Res, vol.23, pp.6292-304, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01595798

C. Patru, L. Romao, P. Varlet, L. Coulombel, E. Raponi et al., CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors, BMC Cancer, vol.10, p.66, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00663773

K. Ludwig and H. I. Kornblum, Molecular markers in glioma, J Neurooncol, vol.134, pp.505-517, 2017.

R. D. Isokpehi, W. Valero, K. C. Graham, B. E. Pacurari, M. Sims et al., Secondary data analytics of aquaporin expression levels in glioblastoma stem-like cells, Cancer Inform, vol.14, pp.95-103, 2015.

R. Galli, E. Binda, U. Orfanelli, B. Cipelletti, A. Gritti et al., Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma, Cancer Res, vol.64, pp.7011-7032, 2004.

C. Hirschmann-jax, A. E. Foster, G. G. Wulf, J. G. Nuchtern, T. W. Jax et al., A distinct "side population" of cells with high drug efflux capacity in human tumor cells, Proc Natl Acad Sci, vol.101, pp.14228-14261, 2004.

M. Rasper, A. Schäfer, G. Piontek, J. Teufel, G. Brockhoff et al., Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity, Neuro Oncol, vol.12, pp.1024-1057, 2010.

N. Shinojima, A. Hossain, T. Takezaki, J. Fueyo-margareto, J. Gumin et al., TGF-? mediates homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells, Cancer Res, vol.73, pp.2333-2377, 2013.

I. A. Ho, H. C. Toh, W. H. Ng, Y. L. Teo, C. M. Guo et al., Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis, Stem Cells, vol.31, pp.146-55, 2013.

S. Pacioni, D. 'alessandris, Q. G. Giannetti, S. Morgante, L. Coccè et al., Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts, Stem Cell Res Ther, vol.8, p.53, 2017.

T. Shahar, U. Rozovski, K. R. Hess, A. Hossain, J. Gumin et al., Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival, Neuro Oncol, vol.19, pp.660-668, 2017.

J. Vieira-de-castro, E. D. Gomes, S. Granja, S. I. Anjo, F. Baltazar et al., Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology, J Transl Med, vol.15, p.200, 2017.

A. Hossain, J. Gumin, F. Gao, J. Figueroa, N. Shinojima et al., Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway, Stem Cells, vol.33, pp.2400-2415, 2015.

I. Nakano, D. Garnier, M. Minata, and J. Rak, Extracellular vesicles in the biology of brain tumour stem cells-implications for inter-cellular communication, therapy and biomarker development, Semin Cell Dev Biol, vol.40, pp.17-26, 2015.

J. Godlewski, R. Ferrer-luna, A. K. Rooj, M. Mineo, F. Ricklefs et al., MicroRNA signatures and molecular subtypes of glioblastoma: the role of extracellular transfer, Stem Cell Rep, vol.8, pp.1497-505, 2017.

F. Ricklefs, M. Mineo, A. K. Rooj, I. Nakano, A. Charest et al., Extracellular vesicles from high-grade glioma exchange diverse prooncogenic signals that maintain intratumoral heterogeneity, Cancer Res, vol.76, pp.2876-81, 2016.

C. Spinelli, L. Montermini, B. Meehan, A. R. Brisson, S. Tan et al., Molecular subtypes and differentiation programmes of glioma stem cells as determinants of extracellular vesicle profiles and endothelial cell-stimulating activities, J Extracell Vesicles, vol.7, p.1490144, 2018.

D. Tomaso, T. Mazzoleni, S. Wang, E. Sovena, G. Clavenna et al., Immunobiological characterization of cancer stem cells isolated from glioblastoma patients, Clin Cancer Res, vol.16, pp.800-813, 2010.

J. Wei, J. Barr, L. Kong, Y. Wang, A. Wu et al., Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway, Mol Cancer Ther, vol.9, pp.67-78, 2010.

R. Domenis, D. Cesselli, B. Toffoletto, E. Bourkoula, F. Caponnetto et al., Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells, PLoS ONE, vol.12, 2017.

B. Otvos, D. J. Silver, E. E. Mulkearns-hubert, A. G. Alvarado, S. M. Turaga et al., Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion, Stem Cells, vol.34, pp.2026-2065, 2016.

M. L. Broekman, S. Maas, E. R. Abels, T. R. Mempel, A. M. Krichevsky et al., Multidimensional communication in the microenvirons of glioblastoma, Nat Rev Neurol, vol.14, pp.482-95, 2018.

T. Avril, E. Vauleon, A. Hamlat, S. Saikali, A. Etcheverry et al., Glioblastoma stem-like cells are more susceptible than differentiated cells to natural killer cell lysis mediated through killer immunoglobulinlike receptors-human leukocyte antigen ligand mismatch and activation receptor-ligand interactions, Front Immunol, vol.22, p.1345, 2012.

X. Zhang, A. Rao, P. Sette, C. Deibert, A. Pomerantz et al., IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression, Neuro Oncol, vol.18, pp.1402-1414, 2016.

N. Charles and E. C. Holland, The perivascular niche microenvironment in brain tumor progression, Cell Cycle, vol.9, pp.3012-3033, 2010.

A. Mohyeldin, T. Garzón-muvdi, and A. Quiñones-hinojosa, Oxygen in stem cell biology: a critical component of the stem cell niche, Cell Stem Cell, vol.7, pp.150-61, 2010.

C. Calabrese, H. Poppleton, M. Kocak, T. L. Hogg, C. Fuller et al., A perivascular niche for brain tumor stem cells, Cancer Cell, vol.11, pp.69-82, 2007.

E. M. Galan-moya, L. Guelte, A. , L. Fernandes, E. Thirant et al., Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway, EMBO Rep, vol.12, pp.470-476, 2011.

T. S. Zhu, M. A. Costello, C. E. Talsma, C. G. Flack, J. G. Crowley et al., Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells, Cancer Res, vol.71, pp.6061-72, 2011.

J. Wang, T. P. Wakeman, J. D. Lathia, A. B. Hjelmeland, X. F. Wang et al., Notch promotes radioresistance of glioma stem cells, Stem Cells, vol.28, pp.17-28, 2010.

S. Bao, Q. Wu, S. Sathornsumetee, Y. Hao, Z. Li et al., Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor, Cancer Res, vol.66, pp.7843-7851, 2006.

C. Folkins, Y. Shaked, S. Man, T. Tang, C. R. Lee et al., Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1, Cancer Res, vol.69, pp.7243-51, 2009.

H. Yan, M. Romero-lópez, L. I. Benitez, K. Di, H. B. Frieboes et al., 3D mathematical modeling of glioblastoma suggests that transdifferentiated vascular endothelial cells mediate resistance to current standard-of-care therapy, Cancer Res, vol.77, pp.4171-84, 2017.

F. Pistollato, S. Abbadi, E. Rampazzo, L. Persano, D. Puppa et al., Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma, Stem Cells, vol.28, pp.851-62, 2010.

E. E. Bar, A. Lin, V. Mahairaki, W. Matsui, and C. G. Eberhart, Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres, Am J Pathol, vol.177, pp.1491-502, 2010.

E. Codrici, A. M. Enciu, I. D. Popescu, S. Mihai, and C. Tanase, Glioma stem cells and their microenvironments: providers of challenging therapeutic targets, Stem Cells Int, p.5728438, 2016.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-74, 2011.

R. L. Elstrom, D. E. Bauer, M. Buzzai, R. Karnauskas, M. H. Harris et al., Akt stimulates aerobic glycolysis in cancer cells, Cancer Res, vol.64, pp.3892-3901, 2004.

A. Wolf, S. Agnihotri, J. Micallef, J. Mukherjee, N. Sabha et al., Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme, J Exp Med, vol.208, pp.313-339, 2011.

C. V. Dang, A. Le, and P. Gao, MYC-induced cancer cell energy metabolism and therapeutic opportunities, Clin Cancer Res, vol.15, pp.6479-83, 2009.

P. J. Pollard, N. C. Wortham, and I. Tomlinson, The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase, Ann Med, vol.35, pp.632-641, 2003.

S. Venneti and C. B. Thompson, Metabolic modulation of epigenetics in gliomas, Brain Pathol, vol.23, pp.217-238, 2013.

L. Dang, D. W. White, S. Gross, B. D. Bennett, M. A. Bittinger et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.462, pp.739-783, 2009.

M. P. King and G. Attardi, Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation, Science, vol.246, pp.500-503, 1989.

J. A. Menendez and T. Alarcón, Metabostemness: a new cancer hallmark, Front. Oncol, vol.4, p.262

I. Marin-valencia, C. Yang, T. Mashimo, S. Cho, H. Baek et al., Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo, Cell Metab, vol.15, pp.827-864, 2012.

E. A. Maher, I. Marin-valencia, R. M. Bachoo, T. Mashimo, J. Raisanen et al., Metabolism of [U-13C]glucose in human brain tumors in vivo, NMR Biomed, vol.25, pp.1234-1278, 2012.

A. Kathagen, A. Schulte, G. Balcke, H. S. Phillips, T. Martens et al., Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells, Acta Neuropathol, vol.126, pp.763-80, 2013.

E. Vlashi, C. Lagadec, L. Vergnes, T. Matsutani, K. Masui et al., Metabolic state of glioma stem cells and nontumorigenic cells, Proc Natl Acad Sci, vol.108, pp.16062-16069, 2011.

V. S. Lebleu, J. T. O'connell, G. Herrera, K. N. Wikman, H. Pantel et al., PGC-1? mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis, Nat Cell Biol, vol.16, pp.992-1003, 2014.

Z. Tan, X. Luo, X. L. Tang, M. Bode, A. M. Dong et al., The role of PGC1? in cancer metabolism and its therapeutic implications, Mol Cancer Ther, vol.15, pp.774-82, 2016.

M. Peiris-pagès, U. E. Martinez-outschoorn, R. G. Pestell, F. Sotgia, and M. P. Lisanti, Cancer stem cell metabolism, Breast Cancer Res, vol.18, p.55, 2016.

C. Chen, U. Kumar, D. B. Punj, V. Xu, J. Sher et al., NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism, Cell Metab, vol.23, pp.206-225, 2016.

K. Lee, J. M. Giltnane, J. M. Balko, L. J. Schwarz, A. L. Guerrero-zotano et al., MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation, Cell Metab, vol.26, pp.633-680, 2017.

F. Vazquez, J. Lim, H. Chim, K. Bhalla, G. Girnun et al., PGC1? expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress, Cancer Cell, vol.23, pp.287-301, 2013.

G. Zhang, D. T. Frederick, L. Wu, Z. Wei, C. Krepler et al., Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors, J Clin Invest, vol.126, pp.1834-56, 2016.

G. Farnie, F. Sotgia, and M. P. Lisanti, High mitochondrial mass identifies a subpopulation of stem-like cancer cells that are chemo-resistant, Oncotarget, vol.6, pp.30472-86, 2015.

R. J. Deberardinis and T. Cheng, Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer, Oncogene, vol.29, pp.313-337, 2010.

R. J. Deberardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff et al., Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proc Natl Acad Sci, vol.104, pp.19345-50, 2007.

L. Yang, S. Venneti, and D. Nagrath, Glutaminolysis: a hallmark of cancer metabolism, Annu Rev Biomed Eng, vol.19, pp.163-94, 2017.

L. Oburoglu, S. Tardito, V. Fritz, S. C. De-barros, P. Merida et al., Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification, Cell Stem Cell, vol.15, pp.169-84, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02191586

S. Tardito, A. Oudin, S. U. Ahmed, F. Fack, O. Keunen et al., Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma, Nat Cell Biol, vol.17, pp.1556-68, 2015.

T. Cheng, J. Sudderth, C. Yang, A. R. Mullen, E. S. Jin et al., Pyruvate carboxylase is required for glutamine-independent growth of tumor cells, Proc Natl Acad Sci, vol.108, pp.8674-8683, 2011.

C. Yang, J. Sudderth, T. Dang, R. M. Bachoo, R. G. Bachoo et al., Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling, Cancer Res, vol.69, pp.7986-93, 2009.

P. S. Ward, J. Patel, D. R. Wise, A. , O. Bennett et al., The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alphaketoglutarate to 2-hydroxyglutarate, Cancer Cell, vol.17, pp.225-259, 2010.

A. R. Mullen, W. W. Wheaton, E. S. Jin, P. Chen, L. B. Sullivan et al., Reductive carboxylation supports growth in tumour cells with defective mitochondria, Nature, vol.481, pp.385-393, 2012.

C. M. Metallo, P. A. Gameiro, E. L. Bell, K. R. Mattaini, J. Yang et al., Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia, Nature, vol.481, pp.380-384, 2011.

D. R. Wise, P. S. Ward, J. Shay, J. R. Cross, J. J. Gruber et al., Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of ?-ketoglutarate to citrate to support cell growth and viability, Proc Natl Acad Sci, vol.108, pp.19611-19617, 2011.

I. Samudio, R. Harmancey, M. Fiegl, H. Kantarjian, M. Konopleva et al., Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction, J Clin Invest, vol.120, pp.142-56, 2010.

T. Wang, J. F. Fahrmann, H. Lee, Y. Li, S. C. Tripathi et al., JAK/STAT3-regulated fatty acid ?-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance, Cell Metab, vol.27, pp.136-50, 2018.

I. Buhaescu and H. Izzedine, Mevalonate pathway: a review of clinical and therapeutical implications, Clin Biochem, vol.40, pp.575-84, 2007.

H. Chen, N. Joalland, J. S. Bridgeman, F. S. Alchami, U. Jarry et al., Synergistic targeting of breast cancer stem-like cells by human ?? T cells and CD8+ T cells, Immunol Cell Biol, vol.95, pp.620-629, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01806851

S. Grande, A. Palma, L. Ricci-vitiani, A. M. Luciani, M. Buccarelli et al., Metabolic heterogeneity evidenced by MRS among patientderived glioblastoma multiforme stem-like cells accounts for cell clustering and different responses to drugs, Stem Cells Int, p.3292704, 2018.

H. S. Günther, N. O. Schmidt, H. S. Phillips, D. Kemming, S. Kharbanda et al., Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria, Oncogene, vol.27, pp.2897-909, 2008.

G. Marziali, M. Signore, M. Buccarelli, S. Grande, A. Palma et al., Metabolic/Proteomic signature defines two glioblastoma subtypes with different clinical outcome, Sci Rep, vol.6, p.21557, 2016.

I. Nakano, Stem cell signature in glioblastoma: therapeutic development for a moving target, J Neurosurg, vol.122, 2015.

I. Saga, S. Shibao, J. Okubo, S. Osuka, Y. Kobayashi et al., Integrated analysis identifies different metabolic signatures for tumorinitiating cells in a murine glioblastoma model, Neuro Oncol, vol.16, pp.1048-56, 2014.

A. Stadlbauer, M. Zimmermann, A. Doerfler, S. Oberndorfer, M. Buchfelder et al., Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1 wild-type glioblastoma, Neuro Oncol, vol.20, pp.1536-1582, 2018.

G. L. Semenza, HIF-1: upstream and downstream of cancer metabolism, Curr Opin Genet Dev, vol.20, pp.51-57, 2010.

C. Dong, T. Yuan, Y. Wu, Y. Wang, T. Fan et al., Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer, Cancer Cell, vol.23, pp.316-347, 2013.

A. B. Hjelmeland, Q. Wu, J. M. Heddleston, G. S. Choudhary, J. Macswords et al., Acidic stress promotes a glioma stem cell phenotype, Cell Death Differ, vol.18, pp.829-869, 2011.

E. Cuyàs, B. Corominas-faja, and J. A. Menendez, The nutritional phenome of EMT-induced cancer stem-like cells, Oncotarget, vol.5, pp.3970-82, 2014.

P. Sonveaux, F. Végran, T. Schroeder, M. C. Wergin, J. Verrax et al., Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice, J Clin Invest, vol.118, pp.3930-3972, 2008.

U. E. Martinez-outschoorn, M. P. Lisanti, and F. Sotgia, Catabolic cancerassociated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth, Semin Cancer Biol, vol.25, pp.47-60, 2014.

L. Pellerin and P. J. Magistretti, Sweet sixteen for ANLS, J Cereb Blood Flow Metab, vol.32, pp.1152-66, 2012.

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. Gerdes, Nanotubular highways for intercellular organelle transport, Science, vol.303, pp.1007-1017, 2004.

A. Caicedo, V. Fritz, J. Brondello, M. Ayala, I. Dennemont et al., MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function, Sci Rep, vol.5, p.9073, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01834600

L. Dong, J. Kovarova, M. Bajzikova, A. Bezawork-geleta, D. Svec et al., Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells, vol.6, 2017.

A. S. Tan, J. W. Baty, L. Dong, A. Bezawork-geleta, B. Endaya et al., Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA, Cell Metab, vol.21, pp.81-94, 2015.

K. Ichimura, D. M. Pearson, S. Kocialkowski, L. M. Bäcklund, R. Chan et al., IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas, Neuro Oncol, vol.11, pp.341-348, 2009.

L. Dang, K. Yen, and E. C. Attar, IDH mutations in cancer and progress toward development of targeted therapeutics, Ann Oncol, vol.27, pp.599-608, 2016.

M. Sasaki, C. B. Knobbe, J. C. Munger, E. F. Lind, D. Brenner et al., IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics, Nature, vol.488, pp.656-665, 2012.

D. Rohle, J. Popovici-muller, N. Palaskas, S. Turcan, C. Grommes et al., An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells, Science, vol.340, pp.626-656, 2013.

K. Tateishi, H. Wakimoto, A. J. Iafrate, S. Tanaka, F. Loebel et al., Extreme vulnerability of idh1 mutant cancers to NAD+ depletion, Cancer Cell, vol.28, pp.773-84, 2015.

A. R. Grassian, S. J. Parker, S. M. Davidson, A. S. Divakaruni, C. R. Green et al., IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism, Cancer Res, vol.74, pp.3317-3348, 2014.

K. Oizel, C. Gratas, A. Nadaradjane, L. Oliver, F. M. Vallette et al., D-2-Hydroxyglutarate does not mimic all the IDH mutation effects, in particular the reduced etoposide-triggered apoptosis mediated by an alteration in mitochondrial NADH, Cell Death Dis, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01818661

S. Li, A. P. Chou, W. Chen, R. Chen, Y. Deng et al., Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation, Neuro Oncol, vol.15, pp.57-68, 2013.

R. J. Molenaar, D. Botman, M. A. Smits, V. V. Hira, S. A. Van-lith et al., Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198, Cancer Res, vol.75, pp.4790-802, 2015.

A. Viale, P. Pettazzoni, C. A. Lyssiotis, H. Ying, N. Sánchez et al., Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function, Nature, vol.514, pp.628-660, 2014.

R. Mallik and T. A. Chowdhury, Metformin in cancer, Diabetes Res Clin Pract, vol.143, pp.409-428, 2018.

W. W. Wheaton, S. E. Weinberg, R. B. Hamanaka, S. Soberanes, L. B. Sullivan et al., Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis, Elife, vol.3, 2014.

T. Farge, E. Saland, F. De-toni, N. Aroua, M. Hosseini et al., Chemotherapy resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism, Cancer Discov, vol.7, pp.716-751, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608532

I. Marchiq, J. Albrengues, S. Granja, C. Gaggioli, J. Pouysségur et al., Knock out of the BASIGIN/CD147 chaperone of lactate/H+ symporters disproves its pro-tumour action via extracellular matrix metalloproteases (MMPs) induction, Oncotarget, vol.6, pp.24636-24684, 2015.

M. Fiorillo, R. Lamb, H. B. Tanowitz, A. R. Cappello, U. E. Martinez-outschoorn et al., Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs), Aging, vol.8, pp.1593-607, 2016.

W. Senkowski, X. Zhang, M. H. Olofsson, R. Isacson, U. Höglund et al., Three-dimensional cell culture-based screening identifies the anthelmintic drug nitazoxanide as a candidate for treatment of colorectal cancer, Mol Cancer Ther, vol.14, pp.1504-1520, 2015.

A. De-luca, M. Fiorillo, M. Peiris-pagès, B. Ozsvari, D. L. Smith et al., Mitochondrial biogenesis is required for the anchorageindependent survival and propagation of stem-like cancer cells, Oncotarget, vol.6, pp.14777-95, 2015.

E. Fessler, T. Borovski, and J. P. Medema, Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF, Mol Cancer, vol.14, p.157, 2015.

T. Borovski, P. Beke, O. Van-tellingen, H. M. Rodermond, J. J. Verhoeff et al., Therapy-resistant tumor microvascular endothelial cells contribute to treatment failure in glioblastoma multiforme, Oncogene, vol.32, pp.1539-1587, 2013.

M. Garcia-barros, F. Paris, C. Cordon-cardo, D. Lyden, S. Rafii et al., Tumor response to radiotherapy regulated by endothelial cell apoptosis, Science, vol.300, pp.1155-1164, 2003.

F. Paris, Z. Fuks, A. Kang, P. Capodieci, G. Juan et al., Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice, Science, vol.293, pp.293-300, 2001.

A. Lafargue, C. Degorre, I. Corre, M. Alves-guerra, M. Gaugler et al., Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation, Free Radic Biol Med, vol.108, pp.750-759, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01514403

P. Paul-gilloteaux, V. Potiron, G. Delpon, S. Supiot, S. Chiavassa et al., Optimizing radiotherapy protocols using computer automata to model tumour cell death as a function of oxygen diffusion processes. Sci Rep, vol.7, p.2280, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01550008

J. M. Facucho-oliveira, S. John, and J. C. , The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation, Stem Cell Rev, vol.5, pp.140-58, 2009.

S. Kilens, D. Meistermann, D. Moreno, C. Chariau, A. Gaignerie et al., Parallel derivation of isogenic human primed and naive induced pluripotent stem cells, Nat Commun, vol.9, p.360, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01758726

C. Pecqueur, L. Oliver, K. Oizel, L. Lalier, and F. M. Vallette, Targeting metabolism to induce cell death in cancer cells and cancer stem cells, Int J Cell Biol, vol.2013, pp.1-13, 2013.

S. Piccirillo, B. A. Reynolds, N. Zanetti, G. Lamorte, E. Binda et al., Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells, Nature, vol.444, pp.761-766, 2006.

M. Morfouace, L. Lalier, M. Bahut, V. Bonnamain, P. Naveilhan et al., Comparison of spheroids formed by rat glioma stem cells and neural stem cells reveals differences in glucose metabolism and promising therapeutic applications, J Biol Chem, vol.287, pp.33664-74, 2012.

M. Morfouace, L. Lalier, L. Oliver, M. Cheray, C. Pecqueur et al., Control of glioma cell death and differentiation by PKM2-Oct4 interaction, Cell Death Dis, vol.5, 2014.

E. D. Michelakis, L. Webster, and J. R. Mackey, Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer, Br J Cancer, vol.99, pp.989-94, 2008.

Q. S. Chu, R. Sangha, J. J. Spratlin, L. J. Vos, J. R. Mackey et al., A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors, Invest. New Drugs, vol.33, pp.603-613, 2015.

E. M. Dunbar, B. S. Coats, A. L. Shroads, T. Langaee, A. Lew et al., Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors, Invest New Drugs, vol.32, pp.452-64, 2014.

E. B. Garon, H. R. Christofk, W. Hosmer, C. D. Britten, A. Bahng et al., Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer, J Cancer Res Clin Oncol, vol.140, pp.443-52, 2014.

C. Lu, P. S. Ward, G. S. Kapoor, D. Rohle, S. Turcan et al., IDH mutation impairs histone demethylation and results in a block to cell differentiation, Nature, vol.483, pp.474-482, 2012.

S. Daniele, C. Giacomelli, E. Zappelli, C. Granchi, L. Trincavelli et al., Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death, vol.5, p.15556, 2015.

Y. Zhang, S. Wang, J. Ma, H. Li, J. Ye et al., EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition, J Neurooncol, vol.121, pp.41-52, 2015.

C. Corbet, E. Bastien, N. Draoui, B. Doix, L. Mignion et al., Interruption of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and radiosensitizing effects, Nat Commun, vol.9, p.1208, 2018.

J. C. Maher, A. Krishan, and T. J. Lampidis, Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-d-glucose in tumor cells treated under hypoxic vs aerobic conditions, Cancer Chemother Pharmacol, vol.53, pp.116-138, 2004.

D. Singh, A. K. Banerji, B. S. Dwarakanath, R. P. Tripathi, J. P. Gupta et al., Optimizing Cancer Radiotherapy with 2-Deoxy-D-Glucose

, Strahlenther Onkol, vol.181, pp.507-521, 2005.

R. Esparza, T. D. Azad, A. H. Feroze, S. S. Mitra, and S. H. Cheshier, Glioblastoma stem cells and stem cell-targeting immunotherapies, J Neurooncol, vol.123, pp.449-57, 2015.

S. Kouidhi, B. Ayed, F. , B. Elgaaied, and A. , Targeting tumor metabolism: a new challenge to improve immunotherapy, Front Immunol, vol.9, p.353, 2018.

C. Chang, J. Qiu, D. O'sullivan, M. D. Buck, T. Noguchi et al., Metabolic competition in the tumor microenvironment is a driver of cancer progression, Cell, vol.162, pp.1229-1270, 2015.

E. Zhao, T. Maj, I. Kryczek, W. Li, K. Wu et al., Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction, Nat Immunol, vol.17, pp.95-103, 2016.

W. Cheng, Y. Tsui, S. Ragusa, V. H. Koelzer, M. Mina et al., Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle, Nat Immunol, vol.20, pp.206-223, 2019.

U. Jarry, C. Chauvin, N. Joalland, A. Léger, S. Minault et al., Stereotaxic administrations of allogeneic human V?9V?2 T cells efficiently control the development of human glioblastoma brain tumors, Oncoimmunology, vol.5, p.1168554, 2016.

P. Jiang, R. Mukthavaram, Y. Chao, N. Nomura, I. S. Bharati et al., In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells, Br J Cancer, vol.111, pp.1562-71, 2014.

M. Yanae, M. Tsubaki, T. Satou, T. Itoh, M. Imano et al., Statin-induced apoptosis via the suppression of ERK1/2 and Akt activation by inhibition of the geranylgeranyl-pyrophosphate biosynthesis in glioblastoma, J Exp Clin Cancer Res, 2011.

J. Fleurence, D. Cochonneau, S. Fougeray, L. Oliver, F. Geraldo et al., Targeting and killing glioblastoma with monoclonal antibody to O-acetyl GD2 ganglioside, Oncotarget, vol.7, pp.41172-85, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01319327

A. S. Anderson, P. C. Roberts, M. I. Frisard, M. W. Hulver, and E. M. Schmelz, Ovarian tumor-initiating cells display a flexible metabolism, Exp Cell Res, vol.328, pp.44-57, 2014.

D. W. Sborov, B. M. Haverkos, and P. J. Harris, Investigational cancer drugs targeting cell metabolism in clinical development, Expert Opin Investig Drugs, vol.24, pp.79-94, 2015.