M. J. Worsham, H. Ali, J. Dragovic, and V. P. Schweitzer, Molecular Characterization of Head and Neck Cancer: How Close to Personalized Targeted Therapy? Mol Diagn Ther, vol.16, pp.209-231, 2012.

A. Jou and J. Hess, Epidemiology and Molecular Biology of Head and Neck Cancer, Oncol Res Treat, vol.40, issue.6, p.28531899, 2017.

L. De-cecco, M. Nicolau, M. Giannoccaro, M. G. Daidone, P. Bossi et al., Head and neck cancer subtypes with biological and clinical relevance: Meta-analysis of gene-expression data, Oncotarget, vol.6, issue.11, p.25821127, 2015.

R. Hasina, M. Whipple, L. Martin, W. P. Kuo, L. Ohno-machado et al., Angiogenic Heterogeneity in Head and Neck Squamous Cell Carcinoma: Biologic and Therapeutic Implications, Lab Investig J Tech Methods Pathol, vol.88, issue.4, pp.342-53, 2008.

C. Sittel, S. Ruiz, P. Volling, H. M. Kvasnicka, M. Jungehülsing et al., Prognostic significance of Ki-67 (MIB1), PCNA and p53 in cancer of the oropharynx and oral cavity, Oral Oncol, vol.35, issue.6, p.10705094, 1999.

S. Xie, Y. Liu, X. Qiao, R. Hua, K. Wang et al., What is the Prognostic Significance of Ki-67 Positivity in Oral Squamous Cell Carcinoma?, J Cancer, vol.7, issue.7, p.27162533, 2016.

C. Fitzmaurice, C. Allen, R. M. Barber, L. Barregard, and Z. A. Bhutta, Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study, JAMA Oncol, vol.3, issue.4, p.27918777, 2017.

L. H. Sobin, M. K. Gospodarowicz, and C. Wittekind, TNM Classification of Malignant Tumours, 2009.

S. Edge, D. R. Byrd, C. C. Compton, and A. Trotti, AJCC Cancer Staging Manual, 2010.

C. Fakhry, W. H. Westra, S. Li, A. Cmelak, J. A. Ridge et al., Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial, J Natl Cancer Inst, vol.100, issue.4, p.18270337, 2008.

K. K. Ang, A. Trotti, B. W. Brown, A. S. Garden, R. L. Foote et al., Randomized trial addressing risk features and time factors of surgery plus radiotherapy in advanced head-and-neck cancer, Int J Radiat Oncol Biol Phys, vol.51, issue.3, p.11597795, 2001.

, National Comprehensive Cancer Network website, National Comprehensive Cancer Network. NCCN Clinical Practive Guidelines in Oncology: Head and Neck Cancer, 2016.

S. Querellou, R. Abgral, L. Roux, P. Nowak, E. Valette et al., Prognostic value of fluorine-18 fluorodeoxyglucose positron-emission tomography imaging in patients with head and neck squamous cell carcinoma. Head Neck, vol.34, p.21604320, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00759315

R. Abgral, N. Keromnes, P. Robin, L. Roux, P. Bourhis et al., Prognostic value of volumetric parameters measured by 18F-FDG PET/CT in patients with head and neck squamous cell carcinoma
URL : https://hal.archives-ouvertes.fr/hal-01255796

, Eur J Nucl Med Mol Imaging, vol.41, issue.4, p.24196922, 2014.

R. Abgral, G. Valette, P. Robin, J. Rousset, N. Keromnes et al., Prognostic evaluation of percentage variation of metabolic tumor burden calculated by dual-phase (18) FDG PET-CT imaging in patients with head and neck cancer, Head Neck, vol.38, issue.1, pp.600-606, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01258692

C. Nioche, F. Orlhac, S. Boughdad, S. Reuzé, J. Goya-outi et al., A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity, Cancer Res, vol.78, issue.16, p.29959149, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938545

M. Vallières, A. Zwanenburg, B. Badic, C. Rest, D. Visvikis et al., Responsible Radiomics Research for Faster Clinical Translation, J Nucl Med, vol.59, issue.2, p.29175982, 2018.

F. Orlhac, M. Soussan, J. Maisonobe, C. A. Garcia, B. Vanderlinden et al., Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis, J Nucl Med Off Publ Soc Nucl Med, vol.55, issue.3, pp.414-436, 2014.

N. Cheng, Y. Fang, J. Chang, C. Huang, D. Tsan et al., Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma, J Nucl Med Off Publ Soc Nucl Med, vol.54, issue.10, pp.1703-1712, 2013.

N. Cheng, Y. Fang, L. Lee, J. Chang, D. Tsan et al., Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer, Eur J Nucl Med Mol Imaging, vol.42, issue.3, p.25339524, 2015.

J. S. Oh, B. C. Kang, J. Roh, J. S. Kim, K. Cho et al., Intratumor Textural Heterogeneity on Pretreatment (18)F-FDG PET Images Predicts Response and Survival After Chemoradiotherapy for Hypopharyngeal Cancer, Ann Surg Oncol, vol.22, issue.8, p.25487968, 2015.

E. H. Dibble, A. Alvarez, M. Truong, G. Mercier, E. F. Cook et al., 18F-FDG metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: adding value to clinical staging, J Nucl Med Off Publ Soc Nucl Med, vol.53, issue.5, pp.709-724, 2012.

C. Kao, S. Lin, T. Hsieh, Y. , Y. Wang et al., Use of pretreatment metabolic tumour volumes to predict the outcome of pharyngeal cancer treated by definitive radiotherapy, Eur J Nucl Med Mol Imaging, vol.39, issue.8, p.22532254, 2012.

J. Daisne, T. Duprez, B. Weynand, M. Lonneux, M. Hamoir et al., Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen, Radiology, vol.233, issue.1, p.15317953, 2004.

X. Geets, J. A. Lee, A. Bol, M. Lonneux, and V. Grégoire, A gradient-based method for segmenting FDG-PET images: methodology and validation, Eur J Nucl Med Mol Imaging, vol.34, issue.9, p.17431616, 2007.

F. Orlhac, M. Soussan, K. Chouahnia, E. Martinod, and I. Buvat, 18F-FDG PET-Derived Textural Indices Reflect Tissue-Specific Uptake Pattern in Non-Small Cell Lung Cancer, PloS One, vol.10, issue.12, p.26669541, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01820353

R. M. Haralick and K. Shanmugam, Its'hak Dinstein. Textural features for image classification, IEEE Trans Syst Man Cybern, vol.3, issue.6, pp.610-631, 1973.

D. Xu, A. S. Kurani, J. D. Furst, and D. S. Raicu, Run-length encoding for volumetric texture, p.ResearchGate

S. Marbella, , 2004.

M. Amadasun and R. King, Textural features corresponding to textural properties, IEEE Trans Syst Man Cybern, vol.19, issue.5, pp.1264-74, 1989.

G. Thibault, B. Fertil, C. Navarro, B. Fetil, H. S. Pereira et al., Texture indexes and gray level size zone matrix. Application to cell nuclei classification, pp.140-145, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01499715

C. Guezennec, P. Robin, F. Orlhac, D. Bourhis, O. Delcroix et al., Prognostic value of textural indices extracted from pretherapeutic 18-F FDG-PET/CT in head and neck squamous cell carcinoma. Head Neck, vol.41, p.30549149, 2019.

R. Leijenaar, G. Nalbantov, S. Carvalho, W. Van-elmpt, E. Troost et al., The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep, vol.5, p.11075, 2015.

K. Pak, G. J. Cheon, H. Nam, S. Kim, K. W. Kang et al., Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis, J Nucl Med Off Publ Soc Nucl Med, vol.55, issue.6, pp.884-90, 2014.

M. Hatt, F. Tixier, C. Le-rest, C. Pradier, O. Visvikis et al., , p.18

F. , PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma, Eur J Nucl Med Mol Imaging, vol.40, issue.11, p.23857457, 2013.

U. Nestle, S. Kremp, A. Schaefer-schuler, C. Sebastian-welsch, D. Hellwig et al., Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer, J Nucl Med Off Publ Soc Nucl Med, vol.46, issue.8, pp.1342-1350, 2005.

F. J. Brooks and P. W. Grigsby, The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake, J Nucl Med Off Publ Soc Nucl Med, vol.55, issue.1, pp.37-42, 2014.

M. Hatt, M. Majdoub, M. Vallières, F. Tixier, L. Rest et al., 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort, J Nucl Med Off Publ Soc Nucl Med, vol.56, issue.1, pp.38-44, 2015.

F. J. Brooks and P. W. Grigsby, Low-order non-spatial effects dominate second-order spatial effects in the texture quantifier analysis of 18F-FDG-PET images, PloS One, vol.10, issue.2, p.25714472, 2015.