D. Langosch, L. Thomas, and H. Betz, Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer, Proc Natl Acad Sci U S A, vol.85, p.2459705, 1988.

N. Durisic, A. G. Godin, C. M. Wever, C. D. Heyes, M. Lakadamyali et al., Stoichiometry of the human glycine receptor revealed by direct subunit counting, J Neurosci, vol.32, issue.37, p.3475605, 2012.

V. Burzomato, P. J. Groot-kormelink, L. G. Sivilotti, and M. Beato, Stoichiometry of recombinant heteromeric glycine receptors revealed by a pore-lining region point mutation, Receptors Channels, vol.9, issue.6, p.14698963, 2003.

J. Grudzinska, R. Schemm, S. Haeger, A. Nicke, G. Schmalzing et al., The beta subunit determines the ligand binding properties of synaptic glycine receptors, Neuron, vol.45, issue.5, p.15748848, 2005.

G. Grenningloh, A. Rienitz, B. Schmitt, C. Methfessel, M. Zensen et al., The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors, Nature, vol.328, issue.6127, p.3037383, 1987.

G. Grenningloh, V. Schmieden, P. R. Schofield, P. H. Seeburg, T. Siddique et al., Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes, EMBO J, vol.9, issue.3, p.551735, 1990.

J. W. Lynch, Molecular structure and function of the glycine receptor chloride channel, Physiol Rev, vol.84, issue.4, p.15383648, 2004.

J. W. Lynch, Native glycine receptor subtypes and their physiological roles, Neuropharmacology, vol.56, issue.1, p.18721822, 2009.

J. H. Singer and A. J. Berger, Development of inhibitory synaptic transmission to motoneurons, Brain Research Bulletin, vol.53, issue.5, pp.553-60, 2000.

T. Takahashi, A. Momiyama, K. Hirai, F. Hishinuma, and H. Akagi, Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels, Neuron, vol.9, issue.6, p.1281418, 1992.

J. Kirsch, I. Wolters, A. Triller, and H. Betz, Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons, Nature, vol.366, issue.6457, pp.745-753, 1993.

G. Meyer, J. Kirsch, H. Betz, and D. Langosch, Identification of a gephyrin binding motif on the glycine receptor beta subunit, Neuron, vol.15, issue.3, p.7546736, 1995.

M. S. Buckwalter, S. A. Cook, M. T. Davisson, W. F. White, and S. A. Camper, A frameshift mutation in the mouse alpha 1 glycine receptor gene (Glra1) results in progressive neurological symptoms and juvenile death, Hum Mol Genet, vol.3, issue.11, 1994.

T. L. Young-pearse, L. Ivic, A. R. Kriegstein, and C. L. Cepko, Characterization of mice with targeted deletion of glycine receptor alpha 2, Mol Cell Biol, vol.26, issue.15, p.1592777, 2006.

R. J. Harvey, U. B. Depner, H. Wassle, S. Ahmadi, C. Heindl et al., GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization, Science, vol.304, issue.5672, p.15131310, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00142904

Y. Sato and M. Nishida, Teleost fish with specific genome duplication as unique models of vertebrate evolution, Environmental Biology of Fishes, vol.88, issue.2, pp.169-88, 2010.

B. David-watine, C. Goblet, D. De-saint-jan, S. Fucile, V. Devignot et al., Cloning, expression and electrophysiological characterization of glycine receptor alpha subunit from zebrafish. Neuroscience, vol.90, p.10188956, 1999.

M. Imboden, D. Saint-jan, D. Leulier, F. Korn, H. Goblet et al., Isolation and characterization of an alpha 2-type zebrafish glycine receptor subunit, Neuroscience, vol.103, issue.3, pp.799-810, 2001.

M. Imboden, V. Devignot, and C. Goblet, Phylogenetic relationships and chromosomal location of five distinct glycine receptor subunit genes in the teleost Danio rerio, Dev Genes Evol, vol.211, issue.8-9, pp.415-437, 2001.

E. Samarut, A. Bekri, and P. Drapeau, Transcriptomic Analysis of Purified Embryonic Neural Stem Cells from Zebrafish Embryos Reveals Signaling Pathways Involved in Glycine-Dependent Neurogenesis, Front Mol Neurosci, vol.9, p.4815022, 2016.

J. R. Mcdearmid, M. Liao, and P. Drapeau, Glycine receptors regulate interneuron differentiation during spinal network development, Proc Natl Acad Sci, vol.103, issue.25, p.1480466, 2006.

S. Cote and P. Drapeau, Regulation of spinal interneuron differentiation by the paracrine action of glycine, Dev Neurobiol, vol.72, issue.2, p.22234938, 2012.

H. Hirata, L. Saint-amant, G. B. Downes, W. W. Cui, W. Zhou et al., Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit, Proc Natl Acad Sci U S A, vol.102, issue.23, p.15928085, 2005.

P. Central and P. , , p.1149420

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, Stages of embryonic development of the zebrafish, Dev Dyn, vol.203, issue.3, p.8589427, 1995.

M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio): Institute of Neuro Science, 1995.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol Syst Biol, vol.7, p.3261699, 2011.

M. Gouy, S. Guindon, and O. Gascuel, SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol Biol Evol, vol.27, issue.2, pp.221-225, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511794

A. Louis, N. T. Nguyen, M. Muffato, R. Crollius, and H. , Genomicus update 2015: KaryoView and MatrixView provide a genome-wide perspective to multispecies comparative genomics, Nucleic Acids Res, vol.43, p.4383929, 2015.

E. Samarut, A. Lissouba, and P. Drapeau, A simplified method for identifying early CRISPR-induced indels in zebrafish embryos using High Resolution Melting analysis, BMC Genomics, vol.17, p.4973544, 2016.

S. E. Low, D. Ito, and H. Hirata, Characterization of the Zebrafish Glycine Receptor Family Reveals Insights Into Glycine Receptor Structure Function and Stoichiometry, Front Mol Neurosci, vol.11, p.6130310, 2018.

W. Tadros and H. D. Lipshitz, The maternal-to-zygotic transition: a play in two acts, Development, vol.136, issue.18, pp.3033-3075, 2009.

M. A. Moreno-mateos, C. E. Vejnar, J. D. Beaudoin, J. P. Fernandez, E. K. Mis et al., CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo, Nat Methods, vol.12, issue.10, p.4589495, 2015.

L. R. Ganser, Q. Yan, V. M. James, R. Kozol, M. Topf et al., Distinct phenotypes in zebrafish models of human startle disease, Neurobiol Dis, vol.60, p.3972633, 2013.

W. W. Cui, S. E. Low, H. Hirata, L. Saint-amant, R. Geisler et al., The zebrafish shocked gene encodes a glycine transporter and is essential for the function of early neural circuits in the CNS, J Neurosci, vol.25, issue.28, p.16014722, 2005.

H. Hirata, K. Ogino, K. Yamada, S. Leacock, and R. J. Harvey, Defective escape behavior in DEAH-box RNA helicase mutants improved by restoring glycine receptor expression, J Neurosci, vol.33, issue.37, p.24027265, 2013.

A. Rossi, Z. Kontarakis, C. Gerri, H. Nolte, S. Holper et al., Genetic compensation induced by deleterious mutations but not gene knockdowns, Nature, vol.524, issue.7564, pp.230-233, 2015.

A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. L. Yan et al., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, vol.151, issue.4, p.1460548, 1999.