D. Harman, The free radical theory of aging: effect of age on serum copper levels, vol.20, p.14284786, 1965.

D. F. Dai, Y. A. Chiao, D. J. Marcinek, H. H. Szeto, and P. S. Rabinovitch, Mitochondrial oxidative stress in aging and healthspan, Longevity & healthspan, vol.3, 2014.

D. Harman, The biologic clock: the mitochondria?, Journal of the American Geriatrics Society, vol.20, issue.4, p.5016631, 1972.

G. Gouspillou, I. Bourdel-marchasson, R. Rouland, G. Calmettes, M. Biran et al., Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging cell, vol.13, p.23919652, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02073308

R. S. Balaban, S. Nemoto, T. Finkel, and . Mitochondria, , vol.120, p.15734681, 2005.

M. P. Murphy, How mitochondria produce reactive oxygen species. The Biochemical journal, PMID: 19061483. Pubmed Central PMCID, vol.417, p.2605959, 2009.

A. L. Orr, D. Ashok, M. R. Sarantos, T. Shi, R. E. Hughes et al., Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free radical biology & medicine, vol.65, p.23994103, 2013.

T. Finkel and N. J. Holbrook, Oxidants, oxidative stress and the biology of ageing, Nature, vol.408, issue.6809, pp.239-286, 2000.

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.443, issue.7113, p.17051205, 2006.

F. L. Muller, M. S. Lustgarten, Y. Jang, A. Richardson, and H. Van-remmen, Trends in oxidative aging theories. Free radical biology & medicine, vol.43, p.17640558, 2007.

J. Nunnari and A. Suomalainen, Mitochondria: in sickness and in health, Cell, vol.148, issue.6, p.22424226, 2012.

L. F. Van-gaal, Mechanisms linking obesity with cardiovascular disease, Nature, vol.444, issue.7121, pp.875-80, 2006.

E. T. Chouchani, V. R. Pell, E. Gaude, D. Aksentijevic, S. Y. Sundier et al., Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS, Nature, vol.515, issue.7527, pp.431-436, 2014.

M. Y. Vyssokikh, Y. N. Antonenko, K. G. Lyamzaev, T. I. Rokitskaya, and V. P. Skulachev, Methodology for use of mitochondria-targeted cations in the field of oxidative stress-related research, Methods in molecular biology, vol.1265, p.25634274, 2015.

R. A. Smith and M. P. Murphy, Mitochondria-targeted antioxidants as therapies. Discovery medicine, vol.11, p.21356165, 2011.

C. Reily, T. Mitchell, B. K. Chacko, G. Benavides, M. P. Murphy et al., Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox biology, vol.1, issue.1, pp.86-93, 2013.

J. Gruber, S. Fong, C. B. Chen, S. Yoong, G. Pastorin et al., Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing, Biotechnology advances

, , p.23022622

D. G. Nicholls and F. S. Bioenergetics, , vol.4, 2013.

R. J. Mailloux, Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species, Redox biology, vol.4, p.4348434, 2015.

T. Finkel, Signal transduction by reactive oxygen species. The Journal of cell biology, vol.194, p.3135394, 2011.

C. L. Quinlan, J. R. Treberg, I. V. Perevoshchikova, A. L. Orr, and M. D. Brand, Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free radical biology & medicine, vol.53, p.3472107, 2012.

M. D. Brand, The sites and topology of mitochondrial superoxide production. Experimental gerontology, vol.45, p.2879443, 2010.

M. D. Brand, The role of mitochondria in longevity and healthspan, Longevity & healthspan, vol.3, p.4030464, 2014.

C. L. Quinlan, I. V. Perevoshchikova, M. Hey-mogensen, A. L. Orr, and M. D. Brand, Sites of reactive oxygen species generation by mitochondria oxidizing different substrates, Redox biology, vol.1, pp.304-316, 2013.

R. L. Goncalves, C. L. Quinlan, I. V. Perevoshchikova, M. Hey-mogensen, and M. D. Brand, Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. The Journal of biological chemistry, vol.290, p.25389297, 2014.

H. S. Wong, P. A. Dighe, V. Mezera, P. A. Monternier, and M. D. Brand, Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. The Journal of biological chemistry, vol.292, p.28842493, 2017.

M. Dulac, A. Sassi, C. Nagarathinan, C. Mo, P. M. Dansette et al., Metabolism of Anethole Dithiolethione by Rat and Human Liver Microsomes: Formation of Various Products Deriving from Its O-Demethylation and S-Oxidation. Involvement of Cytochromes P450 and Flavin Monooxygenases in These Pathways, Drug Metab Dispos, vol.46, issue.10, p.30018103, 2018.

F. Pouzaud, C. Mo, J. M. Warnet, and P. Rat,

, PMID: 15261372. L'anethole dithiolethione: un agent cytoprotecteur contre la tenotoxicite induite par les fluoroquinolones, vol.52, pp.308-321, 2004.

M. O. Christen, Anethole dithiolethione: biochemical considerations, Methods Enzymol, vol.252, p.7476368, 1995.

M. H. Ben-mahdi, A. Gozin, F. Driss, V. Andrieu, C. Mo et al., Anethole dithiolethione regulates oxidant-induced tyrosine kinase activation in endothelial cells, Antioxid Redox Signal, vol.2, issue.4, p.11213483, 2000.

D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu et al., DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic Acids Res, vol.46, issue.D1, p.5753335, 2018.

P. Chen, Y. Luo, L. Hai, S. Qian, and Y. Wu, Design, synthesis, and pharmacological evaluation of the aqueous prodrugs of desmethyl anethole trithione with hepatoprotective activity, Eur J Med Chem, vol.45, issue.7, p.20392547, 2010.

K. Kashfi and K. R. Olson, Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras, Biochem Pharmacol, vol.85, issue.5, p.3566320, 2013.

A. Sparatore, G. Santus, D. Giustarini, R. Rossi, D. Soldato et al., Therapeutic potential of new hydrogen sulfide-releasing hybrids, Expert Rev Clin Pharmacol, vol.4, issue.1, p.22115352, 2011.

G. Gouspillou, R. Rouland, G. Calmettes, V. Deschodt-arsac, J. M. Franconi et al., Accurate determination of the oxidative phosphorylation affinity for ADP in isolated mitochondria, PLoS One, vol.6, issue.6, p.3111431, 2011.

C. L. Hoppel, D. S. Kerr, B. Dahms, and U. Roessmann, Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy, J Clin Invest, vol.80, issue.1, p.442203, 1987.

Q. Chen, E. J. Vazquez, S. Moghaddas, C. L. Hoppel, and E. J. Lesnefsky, Production of reactive oxygen species by mitochondria: central role of complex III. The Journal of biological chemistry, vol.278, p.12840017, 2003.

M. D. Brand, R. L. Goncalves, A. L. Orr, L. Vargas, A. A. Gerencser et al., Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury, Cell Metab, vol.24, issue.4, p.5061631, 2016.

M. D. Brand, Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free radical biology & medicine, vol.100, p.27085844, 2016.

E. J. Lesnefsky, Q. Chen, B. Tandler, and C. L. Hoppel, Mitochondrial Dysfunction and Myocardial IschemiaReperfusion: Implications for Novel Therapies, Annu Rev Pharmacol Toxicol, vol.57, p.27860548, 2017.

M. P. Murphy, Understanding and preventing mitochondrial oxidative damage, Biochem Soc Trans, vol.44, issue.5, p.5095902, 2016.

T. Andrienko, P. Pasdois, A. Rossbach, and A. P. Halestrap, Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning, PLoS One, vol.11, issue.12, p.5131916, 2016.

T. N. Andrienko, P. Pasdois, G. C. Pereira, M. J. Ovens, and A. P. Halestrap, The role of succinate and ROS in reperfusion injury-A critical appraisal, J Mol Cell Cardiol, vol.110, p.5678286, 2017.

Q. Chen, A. K. Camara, D. F. Stowe, C. L. Hoppel, and E. J. Lesnefsky, Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion, Am J Physiol Cell Physiol, vol.292, issue.1, p.16971498, 2007.

M. Aldakkak, D. F. Stowe, Q. Chen, E. J. Lesnefsky, and A. K. Camara, Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release, Cardiovasc Res, vol.77, issue.2, p.17900548, 2008.

L. G. Kevin, A. K. Camara, M. L. Riess, E. Novalija, and D. F. Stowe, Ischemic preconditioning alters real-time measure of O2 radicals in intact hearts with ischemia and reperfusion, Am J Physiol Heart Circ Physiol, vol.284, issue.2, p.12414448, 2003.

M. L. Riess, A. K. Camara, L. G. Kevin, J. An, and D. F. Stowe, Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 degrees C ischemia in intact hearts, Cardiovasc Res, vol.61, issue.3, p.14962488, 2004.

T. L. Vanden-hoek, L. B. Becker, Z. Shao, C. Li, and P. T. Schumacker, Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. The Journal of biological chemistry, vol.273, p.9660766, 1998.

Q. Chen, S. Moghaddas, C. L. Hoppel, and E. J. Lesnefsky, Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria, Am J Physiol Cell Physiol, vol.294, issue.2, p.18077608, 2008.

A. Galkin, A. Y. Abramov, N. Frakich, M. R. Duchen, and S. Moncada, Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? The Journal of biological chemistry, vol.284, p.2794721, 2009.

A. A. Mohsin, Q. Chen, N. Quan, T. Rousselle, M. W. Maceyka et al., Mitochondrial Complex I Inhibition by Metformin Limits Reperfusion Injury, J Pharmacol Exp Ther, p.30846619, 2019.

J. L. Wallace and R. Wang, Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter, Nat Rev Drug Discov, vol.14, issue.5, pp.329-374, 2015.

D. Wu, Q. Hu, and Y. Zhu, Therapeutic application of hydrogen sulfide donors: the potential and challenges, Front Med, vol.10, issue.1, pp.18-27, 2016.

A. Dyson, F. Dal-pizzol, G. Sabbatini, A. B. Lach, F. Galfo et al., Ammonium tetrathiomolybdate following ischemia/reperfusion injury: Chemistry, pharmacology, and impact of a new class of sulfide donor in preclinical injury models, PLoS Med, vol.14, issue.7, p.5497958, 2017.

L. Zhang, Y. Wang, Y. Li, L. Li, S. Xu et al., Hydrogen Sulfide (H2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases, Front Pharmacol, vol.9, p.6160695, 2018.

A. Abou-hamdan, H. Guedouari-bounihi, V. Lenoir, M. Andriamihaja, F. Blachier et al., Oxidation of H2S in mammalian cells and mitochondria, Methods Enzymol, vol.554, p.25725524, 2015.

S. Nandi, S. Ravindran, and G. A. Kurian, Role of endogenous hydrogen sulfide in cardiac mitochondrial preservation during ischemia reperfusion injury, Biomed Pharmacother, vol.97, p.29091875, 2018.

T. Hamada, T. Nakane, T. Kimura, K. Arisawa, K. Yoneda et al., Treatment of xerostomia with the bile secretion-stimulating drug anethole trithione: a clinical trial, Am J Med Sci, vol.318, issue.3, p.10487404, 1999.

S. Lam, C. Macaulay, L. Riche, J. C. Dyachkova, Y. Coldman et al., A randomized phase IIb trial of anethole dithiolethione in smokers with bronchial dysplasia, J Natl Cancer Inst, vol.3, issue.13, p.12096085, 2002.

H. Wang, Z. G. Liu, J. Peng, H. Lin, J. X. Zhong et al.,

, Zhonghua Yan Ke Za Zhi, vol.45, issue.6, pp.492-499, 2009.

K. D. Garlid, P. E. Puddu, P. Pasdois, A. D. Costa, B. Beauvoit et al., Inhibition of cardiac contractility by 5-hydroxydecanoate and tetraphenylphosphonium ion: a possible role of mitoKATP in response to inotropic stress, Am J Physiol Heart Circ Physiol, vol.291, issue.1, p.16473956, 2005.